請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59733
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 席行正 | |
dc.contributor.author | Jui-Chi Wang | en |
dc.contributor.author | 王瑞麒 | zh_TW |
dc.date.accessioned | 2021-06-16T09:35:20Z | - |
dc.date.available | 2020-02-20 | |
dc.date.copyright | 2017-02-20 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-13 | |
dc.identifier.citation | Agnan, Y., Le Dantec, T., Moore, C.W., Edwards, G.C., and Obrist, D. (2016). New constraints on terrestrial surface-atmosphere fluxes of gaseous elemental mercury using a global database. Environmental Science & Technology, 50(2), 507-524. doi:10.1021/acs.est.5b04013
AMAP/UNEP. (2013). Technical background report for the global mercury assessment 2013. Arctic Monitoringand Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland. vi + 263 pp Ariya, P.A., Amyot, M., Dastoor, A., Deeds, D., Feinberg, A., Kos, G., Poulain, A., Ryjkov, A., Semeniuk, K., Subir, M., and Toyota, K. (2015). Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: a review and future directions. Chemical Reviews, 115(10), 3760-3802. doi:10.1021/cr500667e Ariya, P.A., Peterson, K., Snider, G., and Amyot, M. (2009). Mercury chemical transformations in the gas, aqueous and heterogeneous phases: state-of-the-art science and uncertainties. 459-501. doi:10.1007/978-0-387-93958-2_15 Aspmo, K., Gauchard, P.A., Steffen, A., Temme, C., Berg, T., Bahlmann, E., Banic, C., Dommergue, A., Ebinghaus, R., Fer- rari, C., Pirrone, N., Sprovieri, F., and Wibetoe, G. (2005). Measurements of atmospheric mercury species during an international study of mercury depletion events at Ny-Alesund, Svalbard,spring 2003. How reproductible are our present methods? Atmospheric Evironment, 39, 7607–7619, doi:10.1016/j.atmosenv.2005.07.065 Brunke, E.-G., Walters, C., Mkololo, T., Martin, L., Labuschagne, C., Silwana, B., Slemr, F., Weigelt, A., Ebinghaus, R., and Somerset, V. (2016). Mercury in the atmosphere and in rainwater at Cape Point, South Africa. Atmospheric Environment, 125, 24-32. doi:10.1016/j.atmosenv.2015.10.059 Bullock, O.R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A., Davignon, D., Ku, J.-Y., Lohman, K., Myers, T.C., Park, R.J., Seigneur, C., Selin, N.E., Sistla, G., and Vijayaraghavan, K. (2008). The North American mercury model intercomparison study (NAMMIS): Study description and model-to-model comparisons. Journal of Geophysical Research, 113(D17). doi:10.1029/2008jd009803 Chand, D., Jaffe, D., Prestbo, E., Swartzendruber, P.C., Hafner, W., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y. (2008). Reactive and particulate mercury in the Asian marine boundary layer. Atmospheric Environment, 42(34), 7988-7996. doi:10.1016/j.atmosenv.2008.06.048 De Simone, F., Cinnirella, S., Gencarelli, C.N., Yang, X., Hedgecock, I.M., and Pirrone, N. (2015). Model study of global mercury deposition from biomass burning. Environmental Science & Technology, 49(11), 6712-6721. doi:10.1021/acs.est.5b00969 Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., and Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways, and effects. Environmental Science & Technology, 47(10), 4967-4983. doi:10.1021/es305071v Eckley, C.S., Blanchard, P., McLennan, D., Mintz, R., and Sekela, M. (2015). Soil-air mercury flux near a large industrial emission source before and after closure (Flin Flon, Manitoba, Canada). Environmental Science & Technology, 49(16), 9750-9757. doi:10.1021/acs.est.5b01995 Eckley, C.S., Gustin, M., Lin, C.J., Li, X., and Miller, M.B. (2010). The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environment, 44(2), 194-203. doi:10.1016/j.atmosenv.2009.10.013 Edwards, G.C., and Howard, D.A. (2013). Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia. Atmospheric Chemistry and Physics, 13(10), 5325- 5336. doi:10.5194/acp-13-5325-2013 Engle, M.A., Tate, M.T., Krabbenhoft, D.P., Kolker, A., Olson, M.L., Edgerton, E.S., DeWild, J.F., and McPherson, A.K. (2008). Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Applied Geochemistry, 23(3), 419-437. doi:10.1016/j.apgeochem.2007.12.024 Engle, M.A., Tate, M.T., Krabbenhoft, D.P., Schauer, J.J., Kolker, A., Shanley, J.B., and Bothner, M.H. (2010). Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America. Journal of Geophysical Research, 115(D18). doi:10.1029/2010jd014064 Engstrom, D.R. (2007). Fish respond when the mercury rises. Proc Natl Acad Sci U S A, 104(42), 16394-16395. doi:10.1073/pnas.0708273104 Ervens, B. (2015). Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev, 115(10), 4157-4198. doi:10.1021/cr5005887 Friedli, H. R., Radke, L. F., Prescott, R., Li, P., Woo, J. H., and Carmichael, G. R. (2004) Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field cam- paign: measurements, distributions, sources, and implications, Journal of Geophysical Research, 109, D19S25, doi:10.1029/2003/JD004244. Fu, X.W., Feng, X., Liang, P., Deliger, Zhang, H., Ji, J., and Liu, P. (2012). Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station,Northwestern China. Atmospheric Chemistry and Physics, 12(4), 1951-1964. doi:10.5194/acp-12-1951-2012 Gabriel, M., Williamson, D., Brooks, S., and Lindberg, S. (2005). Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment, 39(27), 4947-4958. doi:10.1016/j.atmosenv.2005.05.003 Gbor, P., Wen, D., Meng, F., Yang, F., Zhang, B., and Sloan, J. (2006). Improved model for mercury emission, transport and deposition. Atmospheric Environment, 40(5), 973-983. doi:10.1016/j.atmosenv.2005.10.040 Giang, A., Stokes, L.C., Streets, D.G., Corbitt, E.S., and Selin, N.E. (2015). Impacts of the Minamata convention on mercury emissions and global deposition from coal-fired power generation in Asia. Environmental Science & Technology, 49(9), 5326-5335. doi:10.1021/acs.est.5b00074 Grant, S.L., Kim, M., Lin, P., Crist, K.C., Ghosh, S., and Kotamarthi, V.R. (2014). A simulation study of atmospheric mercury and its deposition in the Great Lakes. Atmospheric Environment, 94, 164-172. doi:10.1016/j.atmosenv.2014.05.033 Gratz, L.E., Keeler, G.J., Morishita, M., Barres, J.A., and Dvonch, J.T. (2013). Assessing the emission sources of atmospheric mercury in wet deposition across Illinois. Science Total Environment, 448, 120-131. doi:10.1016/j.scitotenv.2012.11.011 Gustin, M.S., Amos, H.M., Huang, J., Miller, M.B., and Heidecorn, K. (2015). Measuring and modeling mercury in the atmosphere: a critical review. Atmospheric Chemistry and Physics, 15(10), 5697-5713. doi:10.5194/acp-15- 5697-2015 Gustin, M.S., Huang, J., Miller, M.B., Peterson, C., Jaffe, D.A., Ambrose, J., Finley, B.D., Lyman, S.N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg, S.E. (2013). Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. Environmental Science & Technology, 47(13), 7295-7306. doi:10.1021/es3039104 Gustin, M.S., and Lindberg, S.E. (2005). Terrestrial mercury fluxes: is the net exchange up, down, or neither? In: Dynamics of Mercury Pollution on Regional and Global Scale. 241–259. Huang, J., and Gustin, M.S. (2015). Uncertainties of gaseous oxidized mercury measurements using KCl-coated denuders, cation-exchange membranes, and nylon membranes: humidity influences. Environmental Science & Technology, 49(10), 6102-6108. doi:10.1021/acs.est.5b00098 Hynes, A.J., Donohoue, D.L., Goodsite, M.E., and Hedgecock, I.M. (2009). Our current understanding of major chemical and physical processes affecting mercurydynamics in the atmosphere and at the air-water/terrestrial interfaces. 427-457. doi:10.1007/978-0-387-93958-2_14 Jaffe, D., Prestbo, E., Swartzendruber, P., Weiss-Penzias, P., Kato, S., Takami, A., Hatakeyama, S., and Kajii, Y. (2004). Export of atmospheric mercury from Asia, Atmospheric Environment, 39, 3029–3038, 2005. doi: 10.1016/j.atmosenv.2005.01.030 Jaffe, D.A., Lyman, S., Amos, H.M., Gustin, M.S., Huang, J., Selin, N.E., Levin, L., Ter Schure, A., Mason, R.P., Talbot, R., Rutter, A., Finley, B., Jaegle, L., Shah, V., McClure, C., Ambrose, J., Gratz, L., Lindberg, S., Weiss-Penzias, P., Sheu, G.R., Feddersen, D., Horvat, M., Dastoor, A., Hynes, A.J., Mao, H., Sonke, J.E., Slemr, F., Fisher, J.A., Ebinghaus, R., Zhang, Y., and Edwards, G. (2014). Progress on understanding atmospheric mercury hampered by uncertain measurements. Environmental Science & Technology, 48(13), 7204-7206. doi:10.1021/es5026432 Landis, M.S., and Stevens., R.K. (2001). Preliminary results from the USEPA mercury speciation network and aircraft measurements campaigns. In: Paper Presented at the Sixth International Conference of Mercury as a Global Pollutant, Minamata, Japan Lin, C.J., and Pehkonen, S.O. (1999). The chemistry of atmospheric mercury: a review. Atmospheric Environment, 33(13), 2067-2079. doi:http://dx.doi.org/10.1016/S1352-2310(98)00387-2 Lindberg, S.E, Brooks, S., Lin, C.J., Scott, K.J., Landis, M.S., Stevens, R.K., Goodsite, M., and Richter, A. (2002) Dynamic Oxidation of Gaseous Mercury in the Arctic Troposphere at Polar Sunrise. Environmental Science & Technology, 36(6), 1245-1256. doi: 10.1021/es0111941 Lindberg, S.E, Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. (0044-7447 (Print)). Lindqvist, O., and Rodhe, H. (1985). Atmospheric mercury: a review. Tellus B, 37B(3), 136-159. doi:10.1111/j.1600-0889.1985.tb00062.x Liu, B., Keeler, G.J., Dvonch, J.T., Barres, J.A., Lynam, M.M., Marsik, F.J., and Morgan, J.T. (2007). Temporal variability of mercury speciation in urban air. Atmospheric Environment, 41(9), 1911-1923. doi:10.1016/j.atmosenv.2006.10.063 Lu, J. Y., Schroeder, W. H., Barrie, L. A., Steffen, A., Welch, H.E., Martin, K., Lockhart, L., Hunt, R. V., Boila, G., and Richter, A. (2002). Magnification of atmospheric mercury deposition to polar regions in springtime: the link totropospheric ozone depletion chemistry, Geophysical Research Letters, 28, 3219–3222, doi: 10.1029/2000GL012603 Malcolm, E.G., and Keeler, G.J. (2003). The effects of the coastal environment on the atmospheric mercury cycle. Journal of Geophysical Research, 108(D12). doi:10.1029/2002jd003084 Malcolm, E.G., and Keeler, G.J. (2007). Evidence for a sampling artifact for particulate-phase mercury in the marine atmosphere. Atmospheric Environment, 41(16), 3352-3359. doi:10.1016/j.atmosenv.2006.12.024 Marumoto, K., and Matsuyama, A. (2014). Mercury speciation in wet deposition samples collected from a coastal area of Minamata Bay. Atmospheric Environment, 86, 220-227. doi:10.1016/j.atmosenv.2013.12.011 Mason, R.P., and Sheu, G.R. (2002). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4), 40-41-40-14. doi:10.1029/2001gb001440 Nair, U.S., Wu, Y., Walters, J., Jansen, J., and Edgerton, E.S. (2012). Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States. Atmospheric Environment, 47, 499-508. doi:10.1016/j.atmosenv.2011.09.056 Obrist, D., Hallar, A.G., McCubbin, I., Stephens, B., and Rhan, T. (2008) Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake, Atmospheric Environment, 42, 7579–7589, doi:10.1016/j.atmosenv.20 08.06.051 Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and Maxson, P. (2010). Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 44(20), 2487-2499. doi:10.1016/j.atmosenv.2009.06.009 Petroff, A., and Zhang, L. (2010). Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geoscientific Model Development, 3(2), 753-769. doi:10.5194/gmd-3-753- 2010 Pirrone, N., Aas, W., Cinnirella, S., Ebinghaus, R., Hedgecock, I.M., Pacyna, J., Sprovieri, F., and Sunderland, E.M. (2013). Toward the next generation of air quality monitoring: Mercury. Atmospheric Environment, 80, 599-611. doi:10.1016/j.atmosenv.2013.06.053 Poissant, L., Pilote, M., Beauvais, C., Constant, P., and Zhang, H. (2005). A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hg) in southern Quebec, Canada. Atmospheric Environment, 39(7), 1275- 1287. doi:10.1016/j.atmosenv.2004.11.007 Ren, X., Luke, W.T., Kelley, P., Cohen, M.D., Artz, R., Olson, M.L., Schmeltz, D., Puchalski, M., Goldberg, D.L., Ring, A., Mazzuca, G.M., Cummings, K.A., Wojdan, L., Preaux, S., and Stehr, J.W. (2016). Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmospheric Environment, 146, 141-152. doi:10.1016/j.atmosenv.2016.08.028 Rutter A.P., Hanford, K.L., Zwers, J.T., Perillo-Nicholas, A.L., Schauer, J.J., Olson, and M.L. (2008). Evaluation of an offline method for the analysis of atmospheric reactive gaseous mercury and particulate mercury, Journal of the Air & Waste Management Association, 58:3, 377-383, doi:10.3155/1047-3289.58.3.377 Ryaboshapko, A., Bullock, O.R., Jr., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Travnikov, O., Artz, R.S., Davignon, D., Draxler, R.R., Munthe, J., and Pacyna, J. (2007). Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets. Science Total Environment, 377(2- 3), 319-333. doi:10.1016/j.scitotenv.2007.01.071 Schroeder, W.H., and Munthe, J. (1998). Atmospheric mercury—An overview. Atmospheric Environment, 32(5), 809-822. doi:http://dx.doi.org/10.1016/S1352-2310(97)00293-8 Seinfeld, J.H., and Pandis, S.N. (1998). Atmospheric chemistry and physics. Selin, N.E. (2009). Global biogeochemical cycling of mercury: A review. Annual Review of Environment and Resources, 34(1), 43-63. doi:10.1146/annurev.environ.051308.084314 Selin, N.E. (2014). Global change and mercury cycling: challenges for implementing a global mercury treaty. Environmental Toxicology Chemistry, 33(6), 1202-1210. doi:10.1002/etc.2374 Seo, Y.-S., Han, Y.-J., Choi, H.-D., Holsen, T.M., and Yi, S.-M. (2012). Characteristics of total mercury (TM) wet deposition: Scavenging of atmospheric mercury species. Atmospheric Environment, 49, 69-76. doi:10.1016/j.atmosenv.2011.12.031 Shanley, J.B., Engle, M.A., Scholl, M., Krabbenhoft, D.P., Brunette, R., Olson, M.L., and Conroy, M.E. (2015). High mercury wet deposition at a 'Clean Air' site in Puerto Rico. Environmental Science & Technology, 49(20), 12474-12482. doi:10.1021/acs.est.5b02430 Sheu, G.-R., Lin, C.-C., and Lin, N.-H. (2007). Monitoring of atmospheric mercury concentration at surface sites in Taiwan. Journal of Environmental Protection, 30(1). Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F., and Wang, S.-H. (2010). Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment, 44(20), 2393-2400. doi:10.1016/j.atmosenv.2010.04.009 Sheu, G.-R., and Mason, R.P. (2001). An examination of methods for the measurements of reactive gaseous mercury in the atmosphere. Environmental Science & Technology, 35(6), 1209-1216. doi:10.1021/es001183s Song, S., Selin, N.E., Soerensen, A.L., Angot, H., Artz, R., Brooks, S., Brunke, E.G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T.M., Jaffe, D.A., Kang, S., Kelley, P., Luke, W.T., Magand, O., Marumoto, K., Pfaffhuber, K.A., Ren, X., Sheu, G.R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D.C., and Zhang, Q. (2015). Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling. Atmospheric Chemistry and Physics, 15(12), 7103-7125. doi:10.5194/acp-15-7103-2015 Sportisse, B. (2007). A review of parameterizations for modelling dry deposition and scavenging of radionuclides. Atmospheric Environment, 41(13), 2683-2698. doi:10.1016/j.atmosenv.2006.11.057 Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A. (2010). A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 10(17), 8245-8265. doi:10.5194/acp-10-8245-2010 Streets, D.G., Devane, M.K., Lu, Z., Bond, T.C., Sunderland, E.M.,andJacob, D.J. (2011). All-time releases of mercury to the atmosphere from human activities. Environmental Science & Technology, 45(24), 10485-10491. doi:10.1021/es202765m Streets, D.G., Zhang, Q., and Wu, Y. (2009). Projections of global mercury emissions in 2050. Environmental Science & Technology, 43(8), 2983-2988. doi:10.1021/es802474j Strode, S. A., Jaegle ́, L., Jaffe, D. A., Swartzendruber, P. C., Selin, N. E., Holmes, C., and Yantosca, R. M. (2008). Trans Pacific transport of mercury, Journal of Geophysical Research, 113, D15305, doi:10.1029/2007JD009428 Subir, M., Ariya, P.A., and Dastoor, A.P. (2012). A review of the sources of uncertainties in atmospheric mercury modeling II. Mercury surface and heterogeneous chemistry – A missing link. Atmospheric Environment, 46, 1- 10. doi:10.1016/j.atmosenv.2011.07.047 Swartzendruber, P.C., Jaffe, D.A., Prestbo, E.M., Weiss-Penzias, P., Selin, N.E., Park, R., Jacob, D.J., Strode, S., and Jaegle, L. (2006). Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. Journal of Geophysical Research, 111(D24). doi:10.1029/2006jd007415 Talbot, R., Mao, H., Feddersen, D., Smith, M., Kim, S.Y., Sive, B., Haase, K., Ambrose, J., Zhou, Y., and Russo, R. (2011). Comparison of particulate mercury measured with manual and automated methods. Atmosphere, 2(4), 1-20. doi:10.3390/atmos2010001 T.EPA. (2006). Sampling and analysis at the Lulin Atmospheric Background Station and international collaboration promotion. Environmental Protection Administration, R.O.C. (Taiwan). EPA-95-U1L1-02-101. T.EPA. (2007). Operation and monitoring at the Lulin Atmospheric Background Station and international collaboration and participation in 2007. Environmental Protection Administration, R.O.C. (Taiwan). EPA-96-U1L1-02-101. T.EPA. (2008). Operation and monitoring at the Lulin Atmospheric Background Station and international collaboration and participation. Environmental Protection Administration, R.O.C. (Taiwan). EPA-97-U1L1-02-101. T.EPA. (2010). Research and maintenance at the Lulin Atmospheric Background Station. Environmental Protection Administration, R.O.C. (Taiwan). EPA-99- U1L1-02-101. T.EPA. (2011). Research and maintenance at the Lulin Atmospheric Background Station. Environmental Protection Administration, R.O.C. (Taiwan). EPA-100- U1L1-02-101. T.EPA. (2012). Research and maintenance at the Lulin Atmospheric Background Station. Environmental Protection Administration, R.O.C. (Taiwan). EPA-101- U1L1-02-101. T.EPA. (2013a). The management of dioxins and heavy metals total emissions from stationary in a specified area. Environmental Protection Administration, R.O.C. (Taiwan). EPA-102-FA12-03-A096. T.EPA. (2013b). Research and maintenance at the Lulin Atmospheric Background Station. Environmental Protection Administration, R.O.C. (Taiwan). EPA-102- U1L1-02-101. T.EPA. (2014a). The project of draft control strategy and emission investigation for Dioxins and heavy metals from the stationary sources. Environmental Protection Administration, R.O.C. (Taiwan). EPA-103-FA12-03-A054. T.EPA. (2014b). Research and maintenance at the Lulin Atmospheric Background Station and emote Ssites. Environmental Protection Administration, R.O.C. (Taiwan). EPA-103-U1L1-02-101. T.EPA. (2015). The promotion of control trategy and emission investigation for dioxins and heavy metals from stationary sources. Environmental Protection Administration, R.O.C. (Taiwan). EPA-104-FA12-03-A109. UNEP. (2013). Global mercury assessment 2013: Sources, emissions, releases and environmental transport. UNEP Chemicals Branch. Valente, R.J., Shea, C., Lynn Humes, K., and Tanner, R.L. (2007). Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41(9), 1861-1873. doi:10.1016/j.atmosenv.2006.10.054 Weiss-Penzias, P., Gustin, M.S., and Lyman, S.N. (2009). Observations of speciated atmospheric mercury at three sites in Nevada: Evidence for a free tropospheric source of reactive gaseous mercury. Journal of Geophysical Research, 114(D14). doi:10.1029/2008jd011607 White, E.M., Landis, M.S., Keeler, G.J., and Barres, J.A. (2013). Investigation of mercury wet deposition physicochemistry in the Ohio River Valley through automated sequential sampling. Science Total Environment, 448, 107-119. doi:10.1016/j.scitotenv.2012.12.046 Yin, Y., Parker, D., and Carslaw, K. (2001). Simulation of trace gas redistribution by convective clouds-Liquid phase processes. Atmospheric Chemistry and Physics, 1(1), 19-36. Zhang, H., and Lindberg, S.E. (1999). Processes influencing the emission of mercury from soils: A conceptual model. Journal of Geophysical Research: Atmospheres, 104(D17), 21889-21896. doi:10.1029/1999jd900194 Zhang, L., Blanchard, P., Gay, D.A., Prestbo, E.M., Risch, M.R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T.M., Miller, E.K., Castro, M.S., Graydon, J.A., Louis, V.L.S., and Dalziel, J. (2012). Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America. Atmospheric Chemistry and Physics, 12(9), 4327-4340. doi:10.5194/acp-12- 4327-2012 Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C.J., Vijayaraghavan, K., Gay, D., Holsen, T.M., Huang, J., Graydon, J.A., St Louis, V.L., Castro, M.S., Miller, E.K., Marsik, F., Lu, J., Poissant, L., Pilote, M., and Zhang, K.M. (2012). Assessment of modeled mercury dry deposition over the Great Lakes region. Environmental Pollution, 161, 272-283. doi:10.1016/j.envpol.2011.06.003 Zhang, L., Brook, J.R., and Vet, R. (2003). A revised parameterization for gaseous dry deposition in air-quality models. Atmospheric Chemistry and Physics, 3(6), 2067-2082. doi:10.5194/acp-3-2067-2003 Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35(3), 549-560. doi:http://dx.doi.org/10.1016/S1352- 2310(00)00326-5 Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., Wang, F., Yang, M., Yang, H., Hao, J., and Liu, X. (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology , 49(5), 3185-3194. doi:10.1021/es504840m Zhang, L., Wang, S.X., Wang, L., and Hao, J.M. (2013). Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources. Atmospheric Chemistry and Physics, 13(20), 10505-10516. doi:10.5194/acp-13-10505-2013 Zhang, L., Wright, L.P., and Blanchard, P. (2009). A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment, 43(37), 5853-5864. doi:10.1016/j.atmosenv.2009.08.019 Zyśk, J., Roustan, Y., and Wyrwa, A. (2015). Modelling of the atmospheric dispersion of mercury emitted from the power sector in Poland. Atmospheric Environment, 112, 246-256. doi:10.1016/j.atmosenv.2015.04.040 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59733 | - |
dc.description.abstract | 汞為我國土壤污染管制重金屬項目中唯一具揮發性、持久性及生物累積性的 毒性汙染物,易藉由乾濕沉降到達表土與水體,並透過食物鏈的生物累積效應對 人體健康與生態環境造成影響,其中汞的來源主要可分為人為排放源及自然排放 源,都直接影響大氣汞的濃度變化;爰此,為瞭解臺灣地區之大氣汞物種,本研 究調查台灣某水源區大氣汞物種變化情形。
本研究總計完成九個月大氣汞物種自動連續監測作業(2015/11/24 至 2016/8/31),共取得 34,872 筆氣態元素汞、2,892 筆粒狀結合汞及 2,888 筆反應性 汞調查資料,其平均濃度值分別為 2.15 ng/m3、9.09 pg/m3 及 2.60 pg/m3,與其他 背景濃度研究文獻結果相似,顯示本研究石門水庫測站之汞濃度監測數值符合國 際間認定之大氣汞背景值之定義範圍,受其他固定污染源干擾程度較低,但仍明 顯受季節性因子如風向、溫度、紫外線強度影響造成每日大氣汞物種之變化;且 於冬、春、夏三個季節中,以冬季大氣汞物種濃度最高,春季次之,夏季最小, 其大氣汞物種濃度分別於冬季 2.34 ng/m3、14.0 pg/m3 及 3.14 pg/m3,春季 2.30 ng/m3、8.28 pg/m3 及 2.09 pg/m3,夏季 1.80 ng/m3、4.65 pg/m3 及 2.35 pg/m3;為 比較大氣汞物種自動連續監測與環保署公告手動採樣方法的差異,本研究執行空 氣中汞採樣分析作業,共採集 32 組手動採樣分析之氣狀汞及 33 組粒狀汞樣品汞 濃度分析,其濃度範圍分別為 1.45-3.23 ng/m3 及 4.65-103 pg/m3;相較於自動連 續監測結果,氣狀汞濃度無明顯差異,而手動採樣之粒狀汞濃度明顯高於自動連 續監測,研判與其粒狀汞樣品粒徑有關,自動連續監測設備所採集之粒狀汞樣品 粒徑小於 2.5 μm,而手動採樣之粒狀汞樣品則係採集空氣中總懸浮微粒,但兩 者粒狀汞濃度呈一致性,若自動連續監測之粒狀汞濃度偏高時,手動採樣分析之粒狀汞濃度亦有偏高之趨勢;本研究模擬推估之汞年乾沉降量為2.93 μg/m2,相較於中央大學雲與氣膠實驗室所同時採集之乾沉降量為 7.01 μg/m2 約為 50%低 估,研判可能係因為模式並非開發給亞洲地區,缺乏許多參數,造成模擬數值之誤差。 | zh_TW |
dc.description.abstract | Mercury (Hg), one of the global pollutants, has caused severe impacts globally. Atmospheric Hg, the relative stable form in the atmosphere, was removed easily by the atmospheric mechanism due to the bio-accumulate via the food chain. There are three major atmospheric species, gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg). The anthropogenic emission sources and the natural emission sources were two major contributors of atmospheric Hg. Therefore, investigating the behavior of atmospheric Hg at a clean water reservoir might provide more knowledge on the Hg enrichment in the reservoir environment, from which water was used for drinking purpose.
Results from atmospheric Hg continuous monitoring system were obtained during the sampling period. A 34,872 data amount of GEM was collected with 2.15 ng/m3 as the mean concentration. For RGM, a 2,888 data amount was collected with 2.06 ng/m3 as the mean concentration. For PHg2.5, a 2,892 data amount of PHg2.5 was also collected with 9.09 ng/m3 as the mean concentration. Comparison of other atmospheric Hg continuous monitoring sites was addressed that the concentrations of the study were considered as local background level. Elevated GEM concentrations at 7:00 am to 12:00 am and those decreased at 0:00 am to 7:00 am were exhibited in the study. Photochemical reactions may play an important role in elevated RGM at noon. The PHg2.5 did not show correlation with atmospheric coefficient. Comparison of the sampling method on GEM and PHg was addressed that 32 sample size of GEM and 33 sample size of PHg were collected in the study. The concentrations of GEM from the manual sampling system range from 1.45 to 3.23 ng/m3, and that of the automated speciation data were range from 1.39 to 2.93 ng/m3. The results of GEM and PHg showed high correlation between automated system and manual system by Pearson’s correlation. The simulation of dry deposition addressed that the yearly dry deposition of RGM and PHg was approximately 2.93 μg/m2. The results in the study were 50% underestimated to that of cloud and aerosol lab, namely 7.01 μg/m2. Due to the lack of adequate parameters, such as land use categories and leaf area index, the underestimated results were shown in the study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:35:20Z (GMT). No. of bitstreams: 1 ntu-106-R03541123-1.pdf: 4413319 bytes, checksum: 37add344c6c3b0b9050adc90304eb5a3 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Contents
Contents ..........................................................................................................................i Acknowledgement ........................................................................................................iii 中文摘要....................................................................................................................... iv Abstract ......................................................................................................................... vi List of Figure...............................................................................................................viii List of Table ................................................................................................................... x Chapter 1 Introduction ................................................................................................... 1 1.1 Motivation....................................................................................................................... 1 1.2 Objectives........................................................................................................................ 3 Chapter 2 Literature Review .......................................................................................... 5 2.1 Basic Knowledge of Hg .................................................................................................. 5 2.1.1 Exposure of Hg ........................................................................................................ 6 2.1.2 Species of Atmospheric Hg...................................................................................... 7 2.1.3 Basic Chemistry of Atmospheric Hg ....................................................................... 8 2.2 Hg Circulation................................................................................................................11 2.2.1 Hg Sources............................................................................................................. 12 2.2.2 Concentration of Atmospheric Hg ......................................................................... 14 2.2.3 Hg in Taiwan.......................................................................................................... 17 2.2.4 Hg Deposition........................................................................................................ 19 2.2.5 Hg Re-emission ..................................................................................................... 20 2.3 Measurements of Atmospheric Hg................................................................................ 22 2.4 Estimation of Hg Dry Deposition.................................................................................. 23 Chapter 3 Materials and Methods ................................................................................ 26 3.1 Research approach ........................................................................................................ 26 3.2 Site Description and Monitoring Period........................................................................ 26 3.3 Automated Mercury Speciation..................................................................................... 31 i 3.3.1 Reagent and Maintenance Material ....................................................................... 32 3.3.2 Experimental Devices ............................................................................................ 34 3.4 Manual Atmospheric Hg Sampling System .................................................................. 46 3.4.1 Consumable Maintenance Materials...................................................................... 46 3.4.2 Sampling and Analysis........................................................................................... 48 3.4.3 Laboratory Analysis Devices ................................................................................. 50 3.5 Dry Deposition Estimation............................................................................................ 52 Chapter 4 Results and Discussions .............................................................................. 56 4.1 Atmospheric Hg Automated Speciation Data................................................................ 56 4.2 Seasonal Atmospheric Hg Related to Wind Rose Chart ............................................... 59 4.3 Diurnal Pattern .............................................................................................................. 69 4.4 Data of Manual Sampling System................................................................................. 79 4.5 Estimation of dry deposition ......................................................................................... 83 Chapter 5 Conclusions and Suggestions ...................................................................... 86 5.1 Conclusions................................................................................................................... 86 5.2 Suggestions ................................................................................................................... 87 Reference ..................................................................................................................... 89 Appendix ...................................................................................................................... 99 Appendix-1 Quality assurance and quality control of TekranR 2537X-1130-1135........... 100 Appendix-2 Quality assurance and quality control of manual system .............................. 104 Appendix-3 Parameter of RGM dry deposition ................................................................ 105 Appendix-4 Parameter of PHg2.5 dry deposition............................................................... 108 | |
dc.language.iso | en | |
dc.title | 台灣北部某水源區大氣汞物種濃度變化情形之研究 | zh_TW |
dc.title | Monitoring the variation of atmospheric mercury at a clean water reservoir in northern Taiwan | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許桂榮,曾昭衡,蕭大智 | |
dc.subject.keyword | 大氣汞物種,自動連續監測系統,手動採樣系統,乾沉降, | zh_TW |
dc.subject.keyword | atmospheric mercury speciation,automated monitoring system,manual sampling system,dry deposition, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201700544 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。