請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59726
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許永真 | |
dc.contributor.author | Yu-Chieh Ho | en |
dc.contributor.author | 何宇傑 | zh_TW |
dc.date.accessioned | 2021-06-16T09:35:00Z | - |
dc.date.available | 2019-02-17 | |
dc.date.copyright | 2017-02-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-13 | |
dc.identifier.citation | [1] G. Adomavicius and Y. Kwon. Maximizing aggregate recommendation diversity: A graph-theoretic approach. In Proceedings of workshop on novelty and diversity in recommender systems, pages 3–10, 2011.
[2] G. Adomavicius and Y. Kwon. Improving aggregate recommendation diversity using ranking-based techniques. IEEE Transactions on Knowledge and Data Engineering, 24(5):896–911, 2012. [3] C. Anderson. The long tail: Why the future of business is selling less of more. Hyperion Books, 2008. [4] J. Bobadilla, F. Ortega, A. Hernando, and A. GutiéRrez. Recommender systems survey. Know.-Based Syst., 46:109–132, July 2013. [5] K. Bradley and B. Smyth. Improving recommendation diversity. In Proceedings of the Twelfth National Conference in Artificial Intelligence and Cognitive Science(AICS-01), pages 75–84, 2001. [6] E. Brynjolfsson, Y. J. Hu, and D. Simester. Goodbye pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management Science, 57(8):1373–1386, Aug. 2011. [7] E. Brynjolfsson, Y. J. Hu, and M. D. Smith. Research commentary - long tails vs. superstars: The effect of information technology on product variety and sales concentration patterns. Information Systems Research, 21(4):736–747, 2010. [8] D. M. Fleder and K. Hosanagar. Blockbuster culture’s next rise or fall: The impact of recommender systems on sales diversity. Management Science, 55(5):697–712, 2009. [9] C. Gini. Measurement of inequality of incomes. The Economic Journal, 31(121):124–126, 1921. [10] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an information tapestry. Commun. ACM, 35(12):61–70, Dec. 1992. [11] D. G. Goldstein and D. C. Goldstein. Profiting from the long tail. Harvard Business Review, 84(6):24–28, June 2006. [12] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural networks. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1764–1772, 2014. [13] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, Dec. 2015. [14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015. [15] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’99, pages 230–237, New York, 1999. ACM. [16] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems, 22(1):5–53, January 2004. [17] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554, May 2006. [18] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–507, 2006. [19] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and W. Cao. Deep modeling of group preferences for group-based recommendation. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014. [20] X. Hu, X. Meng, and L. Wang. Svd-based group recommendation approaches: An experimental study of moviepilot. In Proceedings of the 2Nd Challenge on Context-Aware Movie Recommendation, CAMRa ’11, pages 23–28, New York, NY, USA, 2011. ACM. [21] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272, Dec 2008. [22] H.-s. Huang, K.-l. Lin, J. Y.-j. Hsu, and C.-n. Hsu. Item-triggered recommendation for identifying potential customers of cold sellers in supermarkets. In Workshop on the Next Stage of Recommender Systems Research, in conjunction with the 2005 International Conference on Intelligent User Interfaces, 2005. [23] N. Jones and P. Pu. User Technology Adoption Issues in Recommender Systems. In Proceedings of the 2007 Networking and Electronic Commerce Research Conference, pages 379–394, Riva del Garda, 2007. [24] M. I. Jordan. Graphical models. Statistical Science, 19(1):140–155, 2004. [25] Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD ’08, pages 426–434, New York, 2008. ACM. [26] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. Computer, 42(8):30–37, August 2009. [27] A. Krzywicki, W. Wobcke, X. Cai, M. Bain, A. Mahidadia, P. Compton, and Y. S. Kim. Using a critic to promote less popular candidates in a people-to-people recommender system. In Proceedings of the Twenty-Fourth Conference on Innovative Applications of Artificial Intelligence. AAAI, 2012. [28] A. Lacerda and N. Ziviani. Building user profiles to improve user experience in recommender systems. In Proceedings of the sixth ACM international conference on Web search and data mining, WSDM ’13, pages 759–764, New York, NY, USA, 2013. ACM. [29] S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denoising auto-encoder. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, pages 811–820, New York, NY, USA, 2015. ACM. [30] K.-L. Lin. Item-triggered Recommendation. PhD thesis, National Taiwan University, 2005. [31] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy metrics have hurt recommender systems. In CHI’06 Extended Abstracts on Human Factors in Computing Systems, CHI EA’06, pages 1097–1101, New York, NY, USA, 2006. ACM. [32] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In Aaai/iaai, pages 187–192, 2002. [33] K. Q. W. Minmin Chen, Zhixiang Eddie Xu and F. Sha. Marginalized denoising autoencoders for domain adaptation. In proceedings of the 29th international conference on machine learning, 2012. [34] G. Oestreicher-Singer and A. Sundararajan. Recommendation networks and the long tail of electronic commerce. MIS Quarterly, 36(1):65–84, March 2012. [35] Y.-J. Park. The adaptive clustering method for the long tail problem of recommender systems. Knowledge and Data Engineering, IEEE Transactions on, 25(8):1904–1915, 2013. [36] Y.-J. Park and A. Tuzhilin. The long tail of recommender systems and how to leverage it. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages 11–18, New York, NY, USA, 2008. ACM. [37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. [38] L. Pizzato, T. Rej, J. Akehurst, I. Koprinska, K. Yacef, and J. Kay. Recommending people to people: the nature of reciprocal recommenders with a case study in online dating. User Modeling and User-Adapted Interaction, 22:1–42, 2012. [39] I. Porteous, A. Asuncion, and M. Welling. Bayesian matrix factorization with side information and dirichlet process mixtures, 2010. [40] P. Pu, L. Chen, and R. Hu. Evaluating recommender systems from the user‘s perspective: survey of the state of the art. User Modeling and User-Adapted Interaction, 22(4-5):317–355, 2012. [41] S. Rendle. Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology, 3(3):1–22, May 2012. [42] P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM, 40(3):56–58, Mar. 1997. [43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, Oct. 1986. [44] R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems, volume 20, 2008. [45] S. G. Sevil, O. Kucuktunc, P. Duygulu, and F. Can. Automatic tag expansion using visual similarity for photo sharing websites. Multimedia Tools and Applications, 49(1):81–99, 2010. [46] G. Shani and A. Gunawardana. Evaluating recommendation systems. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 257–297. Springer US, 2011. [47] J. Shi, N. Wang, Y. Xia, D.-Y. Yeung, I. King, and J. Jia. Scmf: Sparse covariance matrix factorization for collaborative filtering. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13, pages 2705–2711. AAAI Press, 2013. [48] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Adv. in Artif. Intell., 2009:4:2–4:2, Jan. 2009. [49] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 1139–1147, 2013. [50] A. van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Advances in Neural Information Processing Systems 26, pages 2643–2651. Curran Associates, Inc., 2013. [51] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11:3371–3408, Dec. 2010. [52] C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11, pages 448–456, New York, NY, USA, 2011. ACM. [53] H. Wang, B. Chen, and W.-J. Li. Collaborative topic regression with social regularization for tag recommendation. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13, pages 2719–2725. AAAI Press, 2013. [54] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1235–1244, New York, NY, USA, 2015. ACM. [55] H. Yin, B. Cui, J. Li, J. Yao, and C. Chen. Challenging the long tail recommendation. Proc. VLDB Endow., 5(9):896–907, May 2012. [56] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Personalized entity recommendation: A heterogeneous information network approach. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pages 283–292, New York, NY, USA, 2014. ACM. [57] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma. Collaborative knowledge base embedding for recommender systems. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 353–362, New York, NY, USA, 2016. ACM. [58] M. Zhang. Enhancing diversity in top-n recommendation. In Proceedings of the third ACM conference on Recommender systems, RecSys ’09, pages 397–400, New York, NY, USA, 2009. ACM. [59] M. Zhang and N. Hurley. Avoiding monotony: improving the diversity of recommendation lists. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys ’08, pages 123–130, New York, NY, USA, 2008. ACM. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59726 | - |
dc.description.abstract | 本論文主要探討推薦系統 (Recommender System) 研究當中兩個相
當有趣而重要的主題:推薦多樣性和異構 (Heterogeneous) 數據協同過濾。雖然協同過濾(Collberative Filtering)演算法,建構推薦系統最成功的徑路之一,近年來已達到相當不錯的準確率,近期研究發現僅僅關注準確率是不夠的,我們應該多面向地考量推薦系統的效能:例如推薦結果的多樣性,以及對於異構數據的適應性,才能滿足未來各式各樣多變的推薦情境。在這篇論文中,我對上述兩主題進行了完整的研究,並分別提出能夠有效地多樣化推薦結果,以及靈活地利用異質數據產生更準確、穩定推薦結果的兩個新方法。 先前的研究指出,行銷更多長尾 (Long Tail) 端的商品可望達成企 業、客戶雙贏。然而大多數基於協同過濾的系統仍傾向於推薦較熱銷的商品。在本論文中我提出了一種嶄新方法:藉著將“推薦次數”視為一種“資源”,並依據用戶之間的“相對偏好”來將這些資源分配給各個商品,來多樣化推薦結果。此方法能幫助推銷更多長尾端商品,增進總體推薦多樣性,並同時保持合理的推薦準確性水準。實驗結果顯示,這個新方法可以有效地從長尾端發掘值得推薦的商品。 此外,由於協同過濾演算法在資料極端稀疏時無法穩定地產生準 確的推薦,複合方法 (Hybrid Method) 利用產品描述、使用者資訊等輔助資訊 (Side Information) 來產生品質更好的推薦結果。然而,我發現大多數複合方法都存在以下 3 項限制:1)適應性 (Adaptivity):缺乏適當的介面承接已知資訊以外的額外異構輔助資訊。2)靈活性(Flexibility):模型架構變更需要密集專家知識,無法輕易根據不同的vii輸入資訊或推薦任務靈活地修改。3)通用性 (Generality):模型架構設計基於輸入資料的相關性,並因此限制了參數學習的自由度。以上三項限制使得目前可得的方法無法有效地利用未來來自物聯網 (Internetof Things) 的大規模異構數據:如各式感知器 (Sensor) 數據,以及社交媒體 (Social Media) 上,使用者產生的各式資訊,來產生更有效,並且更符合情境的推薦。在本論文中,我提出了一個複合式推薦系統的端到端 (End-to-End) 深度學習 (Deep Learning) 架構。藉著將使用者喜好預測數學化地描述為一種嵌入學習 (Embedding Learning) 過程,我的方法為各種異構數據輸入提供了模組化的介面,並為真實世界中各式推薦情境提供非常靈活的模型結構。另外,此方法不需依賴數據相關性的假設,並且能夠從各個輸入資訊萃取出的特徵 (Feature) 值上進一步學習更細緻的特徵。我採用了兩個異構數據集 (Dataset),MovieLens 及MoviePilot,試驗本方法在兩種不同的推薦情境下的效能。實驗結果顯示我提出的架構能夠靈活地適應不同的數據輸入以及不同的推薦情境,並且擁有最先進的推薦準確率。 | zh_TW |
dc.description.abstract | This dissertation focus on two interesting and important topics about recommender systems (RS): recommendation diversity and heterogeneous data collaboration. To fulfill the various contexts of recommender system, the most popular and successful approaches for building RS, collaborative filtering (CF) methods become insufficient. Other factors, such as the ability of providing more diverse recommendations and the capability of adapting het-
erogeneous information, should also be taken into consideration. In this work, I proposed two novel approaches for diversifying recommendation results and learning user performance from heterogeneous data respectively. On the one hand, studies have shown that more the sales of long-tail items could be more beneficial to both customers and some business models. However, the majority of CF-based methods tend to recommend popular selling items. I proposed a novel approach which diversifies the results of recommender systems by considering “recommendations” as resources to be allocated to the items according to the “relative preference” between users. My approach enhances the aggregate recommendation diversity by promoting long-tail items and maintains a reasonable level of accuracy simultaneously. The experimental results show that this approach can discover more worth-recommending items from Long Tails and improves user experiences. On the other hand, since CF-based methods often suffer from sparsity problem, hybrid methods utilize side information, such as product descriptions and user profiles to provide more robust recommendations. However,I noticed 3 common constraints among available hybrid methods in terms of 1)Adaptivity: no interfaces for additional heterogeneous side information; 2)Flexibility: model modification requires expertise-intensive process; and 3)Generality: model design depends on correlation between source data and limited inter-sources parameter leaning. These 3 constraints make previous approaches insufficient to leverage large scaled heterogeneous data (e.g., sen- sory data from Internet of Things and all kinds of user-generated data from social media) which will become increasingly accessible in the near future. I proposed an end-to-end deep learning framework for hybrid RS which provides modularized interfaces for additional inputs and flexible model structure for various recommendation scenarios and heterogeneous inputs. Moreover, my approach is able to learn more sophisticated features by considering the interaction between source data. I evaluated proposed approach under two different real-life scenarios: individual recommendation and group recommendation on two real-world heterogeneous datasets. The experimental results demonstrate that my approach holds above mentioned features and its performance suppressed the state-of-the-art approaches. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:35:00Z (GMT). No. of bitstreams: 1 ntu-106-D97922024-1.pdf: 4134276 bytes, checksum: 2231cf5b0ae3ca9396182e672acacf57 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 1 Introduction 1 1.1 Recommendation Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Heterogeneous Data Collaboration . . . . . . . . . . . . . . . . . . . . . 3 1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Literature Review 7 2.1 Factorization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Recommendation Diversity . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Hybrid Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . 9 3 Aggregate Diversity Improvement and Long-Tails Promotion 11 3.1 Game of Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Resource Allocation Phase . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Recommendation Phase . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Accuracy Enhancement Algorithms . . . . . . . . . . . . . . . . 18 4 Deep End-To-End Network Enabled Recommender System 21 4.1 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 Proposed Approach . . . . . . . . . . . . . . . . . 22 4.2.2 Fully Connected Layers . . . . . . . . . . . . . . . . . . . . . . 22 4.2.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 End-To-End Learning Enabled Recommender Systems . . . . . . . . . . 23 4.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.2 Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3.3 Embedding Function and Objective function . . . . . . . . . . . 27 4.3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3.5 Recommendation Generation . . . . . . . . . . . . . . . . . . . . 28 4.4 Adaptation to Various Recommendation Scenarios . . . . . . . . . . . . 28 4.4.1 Individual Recommendation . . . . . . . . . . . . . . . . . . . . 28 4.4.2 Group Recommendation . . . . . . . . . . . . . . . . . . . . . . 29 5 Experimental Results 33 5.1 Aggregate Diversity Improvement and Long-Tails Promotion . . . . . . . 33 5.1.1 Datasets and Data Preprocessing . . . . . . . . . . . . . . . . . . 33 5.1.2 The Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.3 Benchmarks and My Approaches . . . . . . . . . . . . . . . . . 35 5.1.4 Parameters and Experimental Results . . . . . . . . . . . . . . . 36 5.2 Deep End-to-End Network Enabled Recommender Systems . . . . . . . 40 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2.3 Pilot Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2.4 Individual Recommendation . . . . . . . . . . . . . . . . . . . . 43 5.2.5 Group Recommendation . . . . . . . . . . . . . . . . . . . . . . 44 6 Conclusions and Future Study 47 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.2 Future Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Bibliography 51 | |
dc.language.iso | en | |
dc.title | 推薦多樣性與異質資料協同過濾之研究:以機器學習
為徑路 | zh_TW |
dc.title | Towards Recommendation Diversity and Heterogeneous
Data Collaboration: A Machine Learning Approach | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 劉長遠,林軒田,傅立成,洪一平,楊智淵 | |
dc.subject.keyword | 推薦系統,深度學習,多樣性,異構數據,類神經網路,長尾, | zh_TW |
dc.subject.keyword | Recommender System,Deep Learning,Diversity,Heterogeneous Data,Neural Network,Long Tail, | en |
dc.relation.page | 57 | |
dc.identifier.doi | 10.6342/NTU201700547 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。