請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59691完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正平(Jen-Ping Chen) | |
| dc.contributor.author | Li-Jia Wang | en |
| dc.contributor.author | 王理甲 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:33:24Z | - |
| dc.date.available | 2017-02-20 | |
| dc.date.copyright | 2017-02-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-14 | |
| dc.identifier.citation | Abdul-Razzak, H. & Ghan, S. J. (2000). A parameterization of aerosol activation: 2. multiple aerosol types. Journal of Geophysical Research: Atmospheres, 105(D5), 6837–6844.
Abdul-Razzak, H. & Ghan, S. J. (2002). A parameterization of aerosol activation 3. sectional representation. Journal of Geophysical Research: Atmospheres, 107(D3), AAC 1–1–AAC 1–6. Abdul-Razzak, H., Ghan, S. J., & Rivera-Carpio, C. (1998). A parameterization of aerosol activation: 1. single aerosol type. Journal of Geophysical Research: Atmospheres, 103(D6), 6123–6131. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S., Sherwood, S., Stevens, B., & Zhang, X. (2013). Clouds and Aerosols, book section 7, (pp. 571–658). Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA. Clark, T. L. (1974). A study in cloud phase parameterization using the gamma distribution. Journal of the Atmospheric Sciences, 31(1), 142–155. Fountoukis, C. & Nenes, A. (2005). Continued development of a cloud droplet formation parameterization for global climate models. Journal of Geophysical Research: Atmospheres, 110(D11). D11212. Hobbs, P. V. (1993). Aerosol-Cloud-Climate Interactions. Academic Press. Lu, M.-L., Sorooshian, A., Jonsson, H. H., Feingold, G., Flagan, R. C., & Seinfeld, J. H. (2009). Marine stratocumulus aerosol-cloud relationships in the mase-ii experiment: Precipitation susceptibility in eastern pacific marine stratocumulus. Journal of Geophysical Research: Atmospheres, 114(D24). D24203. Miles, N. L., Verlinde, J., & Clothiaux, E. E. (2000). Cloud droplet size distributions in low-level stratiform clouds. Journal of the Atmospheric Sciences, 57(2), 295–311. Morales Betancourt, R. & Nenes, A. (2014). Droplet activation parameterization: the population-splitting concept revisited. Geoscientific Model Development, 7(5), 2345–2357. Myhre, G., Shindell, D., Breon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and Natural Radiative Forcing, book section 8, (pp. 659–740). Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA. Nenes, A. & Seinfeld, J. H. (2003). Parameterization of cloud droplet formation in global climate models. Journal of Geophysical Research: Atmospheres, 108(D14). 4415. Pruppacher, H. & Klett, J. (2010). Diffusion Growth and Evaporation of Water Drops and Snow Crystals, chapter 13, (pp. 502–567). Qiu, Y., Chen, G., Wang, W.-C., Liao, H., & Chen, J.-P. (2017). In-cloud droplet activation in stratocumulus clouds over the southeast pacific: An observational and modelling investigation. Submitted to the Journal of the Atmospheric Sciences. Twomey, S. (1959a). The nuclei of natural cloud formation part i: The chemical diffusion method and its application to atmospheric nuclei. Pure and Applied Geophysics, 43, 227–242. Twomey, S. (1959b). The nuclei of natural cloud formation part ii: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure and Applied Geophysics, 43, 243–249. Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of the Atmospheres Sciences, 34, 1149–1152. Whitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment, 12, 135–159. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59691 | - |
| dc.description.abstract | 使用基本的物理方程式來計算雲滴數量會消耗很多計算資源,因此本研究建立了一個用來快速估計最大雲滴數量Ncmax的參數化方法。為了使用統計方法來找出Ncmax和其他參數的關係本研究先完成了一個只考慮氣塊在固定速度下被舉升時,氣塊內雲凝結核活化、成長、產生雲滴的雲微物理氣塊模式,並測試了多種不同氣膠粒徑分佈及成份。此模式在給予不同的氣膠及環境參數後會得到氣塊中的Ncmax。在經過一些物理推導,並對所推導出來的方程式進行曲線擬合後,可得到Ncmax 和氣膠粒徑分佈與化學成份以及氣塊在雲底時的氣溫、氣壓的高相關參數式。也就是可以利用此參數式來直接且很有效率地算出Ncmax。相較於Nenes & Seinfeld (2003)和Morales Betancourt & Nenes (2014)等人的參數化方法,此研究的計算方法所花的時間不到1/3,且Ncmax 平均誤差小了一個量級,有88%以上的測試資料的誤差在正負10%以內,而其他的參數化方法的誤差88%會落在-30%到3%以上的範圍內。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:33:24Z (GMT). No. of bitstreams: 1 ntu-106-R02229004-1.pdf: 3262814 bytes, checksum: e9130c75db7bb7846795e305e132d3fb (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
口試委員會審定書 i 中文摘要 iii Abstract v 1 Introduction 1 2 Review of Earlier Parameterizations 5 2.1 Fundamental microphysics 5 2.1.1 Aerosol Kohler curve and diffusion growth equation 5 2.1.2 Supersaturation development equation 8 2.1.3 Aerosol number concentration spectrum 8 2.2 Nc max from power law (Twomey (1959b)) 10 2.2.1 Derivation of ss' 13 2.2.2 Derivation of ss' 13 2.3 Nc max from lognormal size distribution 14 2.3.1 Single lognormal distribution 14 2.3.2 Multi-modal lognormal distributions 16 2.3.3 Sectional representative aerosol spectrum 17 2.4 NS parameterization (Nenes & Seinfeld (2003)) 17 2.5 Summary 21 3 Microphysical Parcel Model 23 3.1 Aerosol spectrum 23 3.1.1 lognormal distribution 24 3.1.2 power law spectrum 24 3.2 Governing equations 25 3.3 Parcel model setup 27 3.4 Integrate Trick 28 3.5 Parcel model result analysis 30 4 A New Parameterization Method 37 4.1 Theoretical analysis 37 4.2 Finding key parameters by statistical fitting 38 4.3 Procedure of using the new parameterization 43 4.4 Comparison between the new parameterization and other parameterizations 45 4.5 A test on power law aerosol spectrum 47 5 Discussions 51 5.1 The problem of 'cloud base' location 51 5.2 In-cloud activation 54 6 Conclusion 55 Nomenclature 57 Bibliography 60 | |
| dc.language.iso | en | |
| dc.subject | 雲微物理 | zh_TW |
| dc.subject | 參數化 | zh_TW |
| dc.subject | 雲滴數量 | zh_TW |
| dc.subject | 雲凝結核活化 | zh_TW |
| dc.subject | 過飽合發展方程 | zh_TW |
| dc.subject | 氣塊模式 | zh_TW |
| dc.subject | 雲微物理 | zh_TW |
| dc.subject | 參數化 | zh_TW |
| dc.subject | 雲滴數量 | zh_TW |
| dc.subject | 雲凝結核活化 | zh_TW |
| dc.subject | 氣塊模式 | zh_TW |
| dc.subject | 過飽合發展方程 | zh_TW |
| dc.subject | cloud drop number concentration | en |
| dc.subject | cloud drop activation | en |
| dc.subject | parameterization | en |
| dc.subject | cloud microphysics | en |
| dc.subject | parcel model | en |
| dc.subject | supersaturation developement equation | en |
| dc.subject | cloud drop activation | en |
| dc.subject | cloud drop number concentration | en |
| dc.subject | parameterization | en |
| dc.subject | cloud microphysics | en |
| dc.subject | parcel model | en |
| dc.subject | supersaturation developement equation | en |
| dc.title | 舉升氣塊中最大雲滴數量濃度的參數化方法 | zh_TW |
| dc.title | Parameterization of the maximum cloud drop number
concentration in a lifting parcel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊明仁,洪惠敏,吳健銘,蔡宜君 | |
| dc.subject.keyword | 雲凝結核活化,雲滴數量,參數化,雲微物理,氣塊模式,過飽合發展方程, | zh_TW |
| dc.subject.keyword | cloud drop activation,cloud drop number concentration,parameterization,cloud microphysics,parcel model,supersaturation developement equation, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201700556 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
