請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59683完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Ching-Yuan Lu | en |
| dc.contributor.author | 盧慶原 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:33:02Z | - |
| dc.date.available | 2022-08-01 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-13 | |
| dc.identifier.citation | [1] M. Ando, Y. Itoh, T. Hosoi, K. Takashima, K. Nakajima, and Y. Kitamura. Stackblock: Block-shaped interface for flexible stacking. In Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST’14 Adjunct, pages 41–42, New York, NY, USA, 2014. ACM. [2] T. Bartindale and C. Harrison. Stacks on the surface: Resolving physical order using fiducial markers with structured transparency. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS ’09, pages 57–60, New York, NY, USA, 2009. ACM. [3] P. Baudisch, T. Becker, and F. Rudeck. Lumino: Tangible blocks for tabletop computers based on glass fiber bundles. In ACM CHI 2010 Conference Proceedings, pages 1165–1174, 2010. [4] L. Chan, S. M¨uller, A. Roudaut, and P. Baudisch. Capstones and zebrawidgets: Sensing stacks of building blocks, dials and sliders on capacitive touch screens. In ACM CHI 2012 Conference Proceedings, pages 2189–2192, 2012. [5] P. Dalsgaard and K. Halskov. Tangible 3d tabletops. Interactions, 21(5):42–47, Sept. 2014. [6] P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST ’01, pages 219–226, New York, NY, USA, 2001. ACM. [7] P. Dietz and D. Leigh. Diamondtouch: A multi-user touch technology. In Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST ’01, pages 219–226, New York, NY, USA, 2001. ACM. [8] A. Girouard, A. Tarun, and R. Vertegaal. Displaystacks: Interaction techniques for stacks of flexible thin-film displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pages 2431–2440, New York, NY, USA, 2012. ACM. [9] C. Harrison, H. Benko, and A. D. Wilson. Omnitouch: Wearable multitouch interaction everywhere. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages 441–450, New York, NY, USA, 2011. ACM. [10] F. Heller, S. Voelker, C. Wacharamanotham, and J. Borchers. Transporters: Vision touch transitive widgets for capacitive screens. In CHI ’15: Extended Abstracts of the SIGCHI Conference on Human Factors in Computing Systems, pages 1603–1608, April 2015. [11] T. Hosoi, K. Takashima, T. Adachi, Y. Itoh, and Y. Kitamura. A-blocks: Recognizing and assessing child building processes during play with toy blocks. In SIGGRAPH Asia 2014 Emerging Technologies, SA ’14, pages 1:1–1:2, New York, NY, USA, 2014. ACM. [12] M.-J. Hsieh, R.-H. Liang, D.-Y. Huang, J.-Y. Ke, and B.-Y. Chen. Rfibricks: Interactive building blocks based on rfid. In ACM CHI 2018 Conference Proceedings, pages 189:1–189:10, 2018. [13] M.-J. Hsieh, R.-H. Liang, D.-Y. Huang, J.-Y. Ke, and B.-Y. Chen. Rfibricks: interactive building blocks based on rfid. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, page 189. ACM, 2018. [14] Hsieh, Meng-Ju and Liang, Rong-Hao and Huang, Jheng-You, and Chen, Bing-Yu. Rfidesk: An interactive surface for multi-touch and rich-id stackable tangible interactions. In SIGGRAPH Asia 2018 Emerging Technologies, page 2. ACM, 2018. [15] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI ’97, pages 234–241, New York, NY, USA, 1997. ACM. [16] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages 559–568, New York, NY, USA, 2011. ACM. [17] K. Kato and H. Miyashita. Extensionsticker: A proposal for a striped pattern sticker to extend touch interfaces and its assessment. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 1851–1854, New York, NY, USA, 2015. ACM. [18] K. Lefeuvre, S. Totzauer, M. Storz, A. Kurze, A. Bischof, and A. Berger. Bricks, blocks, boxes, cubes, and dice: On the role of cubic shapes for the design of tangible interactive devices. In Proceedings of the 2018 Designing Interactive Systems Conference, pages 485–496. ACM, 2018. [19] J. Leitner and M. Haller. Geckos: Combining magnets and pressure images to enable new tangible-object design and interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages 2985–2994, New York, NY, USA, 2011. ACM. [20] R.-H. Liang, L. Chan, H.-Y. Tseng, H.-C. Kuo, D.-Y. Huang, D.-N. Yang, and B.-Y. Chen. Gaussbricks: Magnetic building blocks for constructive tangible interactions on portable displays. In CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’14, pages 587–590, New York, NY, USA, 2014. ACM. [21] R.-H. Liang, H.-C. Kuo, L. Chan, D.-N. Yang, and B.-Y. Chen. Gaussstones: Shielded magnetic tangibles for multi-token interactions on portable displays. In ACM UIST 2014 Conference Proceedings, pages 365–372, 2014. [22] T. W. Malone. How do people organize their desks?: Implications for the design of office information systems. ACM Trans. Inf. Syst., 1(1):99–112, Jan. 1983. [23] F. Perteneder, K. Probst, J. Leong, S. Gassler, C. Rendl, P. Parzer, K. Fluch, S. Gahleitner, S. Follmer, H. Koike, and et al. Foxels: Build your own smart furniture. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’20, page 111–122, New York, NY, USA, 2020. Association for Computing Machinery. [24] J. Rekimoto. Smartskin: an infrastructure for freehand manipulation on interactive surfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 113–120. ACM, 2002. [25] M. Schmitz, M. Khalilbeigi, M. Balwierz, R. Lissermann, M. M¨uhlh¨auser, and J. Steimle. Capricate: A fabrication pipeline to design and 3d print capacitive touch sensors for interactive objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software Technology, UIST ’15, pages 253–258, New York, NY, USA, 2015. ACM. [26] B. Ullmer, H. Ishii, and R. J. Jacob. Token+ constraint systems for tangible interaction with digital information. ACM Transactions on Computer-Human Interaction (TOCHI), 12(1):81–118, 2005. [27] K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. Printed optics: 3d printing of embedded optical elements for interactive devices. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages 589–598, New York, NY, USA, 2012. ACM. [28] A. D. Wilson. Playanywhere: A compact interactive tabletop projection-vision system. In Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, UIST ’05, pages 83–92, New York, NY, USA, 2005. ACM. [29] R. Xiao, S. Hudson, and C. Harrison. Supporting responsive cohabitation between virtual interfaces and physical objects on everyday surfaces. Proceedings of the ACM on Human- Computer Interaction, 1(EICS):12, 2017. [30] K. Yasu. Magnetact: Magnetic-sheet-based haptic interfaces for touch devices. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pages 240:1–240:8, New York, NY, USA, 2019. ACM. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59683 | - |
| dc.description.abstract | 近年來,在實體互動介面 (TUI) 領域中所提出的「基於超高頻 (UHF) 無線射頻辨識 (RFID) 技術的被動式互動方塊」可以用來當作數位內容與實體互動介面之間的操作媒介。其近乎無限的編號數量與易維護的特性使其非常適合用於大規模的部屬,但是這些被動式互動方塊本身並不帶有觸控螢幕,因此無法提供像是「觸控」這種更有效率且更直觀的操作方式。 本論文提出了一種帶有觸控螢幕功能的被動式互動方塊,其主要由主動式的基座 (station) 與被動式的方塊 (cube) 兩個部分所組成。主動式基座利用背投影的方式在方塊上呈現數位影像內容,再利用電容式觸控技術來偵測使用者在方塊上的觸控事件。而方塊部分則在內部加入了凹透鏡、凸面鏡與投影膜的設計,並且在投影膜上安裝觸控感應的偵測端。因此當被動式的互動方塊堆疊到主動式的基座上時,便可以在方塊上呈現動態的數位影像內容,並提供偵測觸控操作的功能。我們在此設計下實作出三層的堆疊結構且在單顆方塊上提供 9×9 的觸控矩陣,並驗證其在兩層的堆疊下能夠擁有清晰的畫面 (~10ppi)。如此一來,我們便能透過此系統有效地增強使用者在使用實體互動介面與數位內容進行互動時的體驗與回饋。 | zh_TW |
| dc.description.abstract | Rich-ID passive building blocks, based on UHF RFID technologies, were recently proposed to support interactive semantic construction of digital information as they provide both virtually unlimited IDs and ease-of-maintenance when deployed at scale. However, since these passive stackables are not touchscreens, they do not support direct-touch interactions that are often more effective and intuitive. This paper presents a novel technique to turn Rich-ID building blocks into touchscreens, which is realized by the design of tileable active stations and passive cubes. The tileable active stations provide rear-projection and capacitive touch sensing for the passive RFID building blocks, the cubes, which are extended by lenses, mirrors, and touch-sensing electrodes. The extension allows passive Rich-ID building blocks to provide a modular dynamic visual display and detects touch events when they are stacked on the station. The results show our prototype system successfully provides 3 layers of rich-ID stacking, 9×9 resolution touch sensing per blocks, and an expressive (~10ppi) visual display after 2 layers of stacking. Hence, the tangible interactions during the interactive semantic construction can be effectively enhanced by direct and dynamic touchscreen interactions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:33:02Z (GMT). No. of bitstreams: 1 U0001-1308202019593100.pdf: 30210537 bytes, checksum: cc58746217a082eb6576dc59251ed3db (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 致謝 ii 摘要 iii Abstract iv List of Figures vii Chapter 1 Introduction 1 Chapter 2 Design Consideration 5 2.1 Design of Visual Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Projection Technology . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Projection Direction . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Modularize the Projection Pillar . . . . . . . . . . . . . . . . . . . . 10 2.1.4 Change the Light Path . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.5 Reconfigure the Light . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 Design of Rich-ID Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Tags Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3 Tags Design for Station . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Design of Touch Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Sensing Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 3 RFIPillars 23 3.1 Sensing Touch Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Visual Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Sensing Stacking Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Cube to Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 Station to Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Chapter 4 Interaction Design and Application 32 4.1 Tangible Minecraft Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 Tangible Room Escaping Game . . . . . . . . . . . . . . . . . . . . . . . . 34 Chapter 5 Technical Evaluation 36 5.1 Stack Sensing Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Touch Sensing Capability of 3×3-resolutionouch Sensors . . . . . . . . . . 38 5.2.1 Apparatus and Procedures . . . . . . . . . . . . . . . . . . . . . . . 39 5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Touch Sensing Capability of 9×9-resolutionouch Sensors . . . . . . . . . . 40 5.3.1 Apparatus and Procedures . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.4 Display Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.4.1 Maximum Illuminance . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.4.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Chapter 6 Discussion 43 6.1 Cost Down the Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Improve the Quality and Resolution of Screen . . . . . . . . . . . . . . . . 43 6.3 Weight the Cost and the Scale of Deployment . . . . . . . . . . . . . . . . 44 Chapter 7 Related Work 45 Chapter 8 Conclusion 47 Bibliography 48 | |
| dc.language.iso | en | |
| dc.subject | 觸控螢幕 | zh_TW |
| dc.subject | 模組化 | zh_TW |
| dc.subject | 無線射頻辨識 | zh_TW |
| dc.subject | 可堆疊 | zh_TW |
| dc.subject | 無線射頻辨識 | zh_TW |
| dc.subject | 觸控螢幕 | zh_TW |
| dc.subject | 互動方塊 | zh_TW |
| dc.subject | 垂直顯示螢幕 | zh_TW |
| dc.subject | 實體互動介面 | zh_TW |
| dc.subject | 模組化 | zh_TW |
| dc.subject | 實體互動介面 | zh_TW |
| dc.subject | 可堆疊 | zh_TW |
| dc.subject | 垂直顯示螢幕 | zh_TW |
| dc.subject | 互動方塊 | zh_TW |
| dc.subject | Tangible User Interface | en |
| dc.subject | RFID | en |
| dc.subject | Stackable | en |
| dc.subject | Modular | en |
| dc.subject | Touchscreen | en |
| dc.subject | Building Block | en |
| dc.subject | Vertical Display | en |
| dc.subject | Tangible User Interface | en |
| dc.subject | RFID | en |
| dc.subject | Stackable | en |
| dc.subject | Modular | en |
| dc.subject | Touchscreen | en |
| dc.subject | Building Block | en |
| dc.subject | Vertical Display | en |
| dc.title | 支援大量編號的可堆疊模組化被動式觸控顯示方塊 | zh_TW |
| dc.title | RFIPillars: Turning Passive Rich-ID Building Blocks into Modular and Stackable Touchscreens | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡欣叡(HSIN-JUI TSAI),余能豪(NENG-HAO YU),詹力韋(LI-WEI CHAN),鄭龍磻(LUNG-PAN CHENG) | |
| dc.subject.keyword | 無線射頻辨識,可堆疊,模組化,觸控螢幕,互動方塊,垂直顯示螢幕,實體互動介面, | zh_TW |
| dc.subject.keyword | RFID,Stackable,Modular,Touchscreen,Building Block,Vertical Display,Tangible User Interface, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU202003317 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202019593100.pdf 未授權公開取用 | 29.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
