請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59648
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉雅瑄(Ya-Hsuan Liou) | |
dc.contributor.author | Wei-Chen Kan | en |
dc.contributor.author | 甘瑋甄 | zh_TW |
dc.date.accessioned | 2021-06-16T09:31:28Z | - |
dc.date.available | 2022-02-22 | |
dc.date.copyright | 2017-02-22 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-15 | |
dc.identifier.citation | Aresta, M., Dibenedetto, A., Pastore, C. (2003). Synthesis and characterization of Nb(OR)4[OC(O)OR] (R = Me, Et, Allyl) and their reaction with the parent alcohol to afford organic carbonates. Inorganic Chemistry, 42(10), 3256–61.
Aronne, A., Marenna, E., Califano, V., Fanelli, E., Pernive, P., Trifuoggi, M. (2007). Sol-gel synthesis and structural characterization of niobium-silicon mixed-oxide nanocomposites. Sol-Gel Sci Techanol, 43(2), 193–204. Brayner, R., Bozon-Verduraz, F. (2003). Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Physical Chemistry Chemical Physics, 5(7), 1457–1466. Brown, W. H. (1999). Introduction to organic chemistry: 2nd Edition. Wiley, New York Brunauer, S., Emmett, P. H., Teller, E. (1938). Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(1), 309–319. Cai, Y., Yang, S., Jin, S., Yang, H., Hou, G., Xia, J. (2011). Electrochemical synthesis, characterization and thermal properties of niobium ethoxide. Journal of Central South University of Technology, 18(1), 73–77. Calvino-Casilda, V., Bañares, M. A. (2012). In-situ Raman monitoring of Michael addition for the synthesis of 1-substituted imidazoles intermediates with antiviral properties. Catalysis Today, 187(1), 191–194. Chen, L., Nohair, B., Kaliaguine, S. (2016). Glycerol acetalization with formaldehyde using water-tolerant solid acids. Applied Catalysis A: General, 509(5), 143–152. Demirel-Gülen, S., Lucas, M., Claus, P. (2005). Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catalysis Today, 102(15), 166–172. Deutsch, J., Martin, A., Lieske, H. (2007). Investigations on heterogeneously catalysed condensations of glycerol to cyclic acetals. Journal of Catalysis, 245(2), 428–435. Datka, J., Turek, A. M., Jehng, J. M., Watchs, I. E. (1992). Acidic properties of supported niobium oxide catalysts: an infrared spectroscopy investigation. Journal of Catalysis, 135(1), 189–199. Díaz-Álvarez, A. E., Francos, J., Lastra-Barreira, B., Crochet, P., Cadierno, V. (2011). Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chemical Communications, 47(22), 6208. Dodson, J. R., Leite, T. d C. M., S. Pontes, N., Peres Pinto, B., Mota, C. J. A. (2014). Green Acetylation of Solketal and Glycerol Formal by Heterogeneous Acid Catalysts to Form a Biodiesel Fuel Additive. ChemSusChem, 7(9), 2728–2734. Emil, F., Pfähler, E. (1924). Über Glycerin-aceton und seine Verwendbarkeit zur Reindarstellung von α-Glyceriden; über eine Phosphorsäure-Verbindung des Glykols. Untersuchungen aus Verschiedenen Gebieten, 53(9), 627–642. Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., Castanheiro, J. E. (2010). Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Applied Catalysis B: Environmental, 98(1), 94–99. Francisco, M. S. P., Landers, R., Gushikem, T. (2004). Local order structure and surface acidity properties of a Nb2O5/SiO2 mixed oxide prepared by the sol-gel processing method. Journal of Solid State Chemistry, 177(7), 2432–2439. Gao, X., Watchs, I. E., Wong, M. S., Ying, Y. (2001). Structural and reactivity properties of Nb-MCM-41: comparison with that of Highly Dispered Nb2O5 Catalysts. Journal of Catalysis, 203(1), 18–24. Gadamsetti, S., Rajan, N. P., Rao, G. S., Chary, K. V. R. (2015). Acetalization of glycerol with acetone to bio fuel additives over supported molybdenum phosphate catalysts. Journal of Molecular Catalysis A: Chemical, 410, 49–57. Gu, Y., Jérôme, F. (2010). Glycerol as a sustainable solvent for green chemistry. Green Chemistry, 12(7), 1127. Huang, Y.H., Wu, J. H. (2008). Analysis of biodiesel promotion in Taiwan. Renewable and Sustainable Energy Reviews, 12(4), 1176–1186. Jehng, J. M., Wachs, I. E. (1991). Structural chemistry and Raman spectra of niobium oxides. Chem. Material, 3(1), 100–107. Jie, H., Lia, Q. J., Fan, Y. N. (2013). Dispersion states and acid properties of SiO2-supported Nb2O5. Journal of Solid Chem., 202, 121–127. Melero, J. A. , Grieken, R. V, Morales, G., Paniagua, M. (2007). Acidic mesoporous silica for the acetylation of glycerol: synthesis of bioadditives to petrol fuel. Engry Fuels, 21(3). 1782–1791. Khayoon, M. S., Abbas, A., Hameed, B. H., Triwahyono, S., Jalil, A. A., Harris, A. T., Minett, A. I. (2014). Selective acetalization of glycerol with acetone over nickel nanoparticles supported on multi-walled carbon nanotubes. Catalysis Letters, 144(6), 1009–1015. Lee, E. L., Wachs, I. E. (2007). In situ spectroscopic investigation of the molecular and electronic structures of SiO2 supported surface metal oxides. J. Phys. Chem., 111(39), 14410–14425. Li, L., Korányi, T. I., Sels, B. F., Pescarmona, P. P. (2012). Highly-efficient conversion ofglycerol to solketal over heterogeneous Lewis acid catalysts. Green Chem., 14, 1611–1619. Malas, A. A. (1987). Method of producing halide-free metal oxides. European Patent Application., 0251 432. Manjunathan, P., Maradur, S. P., Halgeri, A. B., Shanbhag, G. V. (2015). Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A: Chemical, 396, 47–54. Marzo, P. C., Gervasini, A., Matteo, M. (2008). Despersed NbOx catalytic phases in silica matrixes: influence of niobium concentration and preparative route. J. Phys. Chem., 112(36), 14064–14074.. Melero, J. A., Grieken, R. V., Morales, G., Paniagua, M. (2007) Acidic Mesoporous Silica for the Acetylation of Glycerol: Synthesis of Bioadditives to Petrol. Engry & Fuels. 21(3). 1782–1791. Menezes, F. D. L., Guimaraes, M. D. O., Da Silva, M. J. (2013). Highly Selective SnCl 2 –Catalyzed Solketal Synthesis at Room Temperature. Industrial and Engineering Chemical Rrsearch, 52(47). 13709–16713 Nair, G. S., Adrijanto, E., Alsalme, A., Kozhevnikov, I. V, Cooke, D. J., Brown, D. R., Shiju, N. R. (2012). Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catal. Sci. Technol. Catal. Sci. Technol, 2(2), 1173–1179. Nakagawa, Y., Tomishige, K. (2011). Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science & Technology, 1(1), 179–190. Nanda, M. R., Yuan, Z., Qin, W., Ghaziaskar, H. S., Poirier, M. A., Xu, C. (Charles). (2014). A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening. Applied Energy, 123(15), 75–81.a Nanda, M. R., Yuan, Z., Qin, W., Ghaziaskar, H. S., Poirier, M. A., Xu, C. (Charles). (2014). Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization. Fuel, 128(15), 113–119.b Nanda, M. R., Zhang, Y., Yuan, Z., Qin, W., Ghaziaskar, H. S., Xu, C. (2016). Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renewable and Sustainable Energy Reviews, 56(1), 1022–1031. Newman, M. S., Renoll, M. (1945). Improved Preparation of Isopropylidene Glycerol. Journal of the American Chemical Society, 67(9), 1621–1621. Nowak, I., Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603–3624. Ozorio, L. P., Pianzolli, R., Mota, M. B. S., Mota, C. J. A. (2012). Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23(5), 931–937. Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., Tascón, J. M. D. (2008). Graphene Oxide Dispersions in Organic Solvents. Langmuir, 24(19), 10560–10564. Rosenkilde, C., Voyiatzis, G., Jensen, V. R., Ystenes, M., Ostvold, T. (1995). Raman Spectroscopic and ab initio Quantum Chemical Investigations of Molecules and Complex Ions in the Molten System CsCl-NbCls-NbOC13. Inorg. Chem, 34(17), 4360–4369. Sandesh, S., Halgeri, A. B., Shanbhag, G. V. (2015). Utilization of renewable resources: Condensation of glycerol with acetone at room temperature catalyzed by organic–inorganic hybrid catalyst. Journal of Molecular Catalysis A: Chemical, 401(15), 73–80. Selvaraj, M., Kawi, S., Park, D. W., Ha, C. S. (2009). A Merit Synthesis of Well-Ordered Two-Dimensional Mesoporous Niobium Silicate Materials with Enhanced Hydrothermal Stability and Catalytic Activity. J. Phys. Chem. C., 113(18), 7743-7749 Souza, T. E., Padula I. D., Teodoro M. M. G., Resende, J. M., Souza, P. P., Oliverira, L. C. A. (2015). Amphiphilic property of niobium oxyhydroxide for waste glycerol conversion to produce solketal. Catalysts Today, 254, 83–89. Stawicka, K., Díaz-Álvarez, A. E., Calvino-Casilda, V., Trejda, M., Bañares, M. A., Ziolek, M. (2016). The role of bronsted and lewis acid sites in acetalization of glycerol over modified mesoporous cellular foams. J. Phys. Chem. 120(30). 16699–16711. Suprun, W., Lutecki, M., Haber, T., Papp, H. (2009). Acidic catalysts for the dehydration of glycerol: Activity and deactivation. Journal of Molecular Catalysis A: Chemical, 309(1–2), 71–78. Suriyaprapadilok, N., Kitiyanan, B. (2011). Synthesis of Solketal from Glycerol and Its Reaction with Benzyl Alcohol. Energy Procedia, 9, 63–69. Tauster, S. J. (1987). Strong metal-support interactions. Accounts of Chemical Research, 20(11), 389–394. Tavares da Silva, C. L., Camorim, V. L. L., Zotin, J. L., Duarte Pereira, M. L. R., J., A. D. C. (2000). Surface acidic properties of alumina-supported niobia prepared by chemical vapour deposition and hydrolysis of niobium pentachloride. Catalysis Today, 57(3), 209–217. Tranca, D. C., Wojtaszek-Gurdak, A., Ziolek, M., Tielens, F. (2015). Supported and inserted monomeric niobium oxide species on/in silica: a molecular picture. Phys. Chem. Chem. Phys., 17(34), 22402–22411. Trejda, M., Tuel, A., Kujawa, J., Kilos, B., Ziolek, M. (2008). Niobium rich SBA-15 materials – preparation, characterisation and catalytic activity, Microporous and Materials, 110(2), 271–278 V. Calvino-Casilda, Stawicka, K., Trejda, M., Ziolek, M., Bañares, M. A. (2014). Real-time Raman monitoring and control of the catalytic acetalization of glycerol with acetone over modified mesoporous cellular foams. J. Phys. Chem., 118(30), 10780–10791. Valencia, J. C. (2016). Monitorizacion Raman de la Formacion de Solketal Catalizada Por Oxidos Mixtos de Nb-Ta. University Politecica de Madrid. Master Thesis. Wachs I. E., Jehng, J. M., Deo, G., Hu, H., Arora, N. (1996). Redox properties of niobium oxide catalysts. Catalysis Today, 28(1-2), 199–205. Ying, X. G., Wachs, I. E., Wong, M. S., Ying, J. Y. (2001). Structural and reactivity properties of Nb-MCM-41: comparison with that of highly dispersed Nb2O5/SiO2 catalysts. Journal of Catalysts, 203(1), 18–24. Yuxia, Z., Wei, L., Huiping, T., & Jun, L. (2006). Advances in Acidity Characterization of solid acid Catalysts. 中國化工, 37(7), 607–614. 林麗娟,X光繞射原理及其應用,工業材料86期,1994,100–109 沈胤亨, 生質柴油之整廠程序設計與控制 Plantwide Design and Control of Biodiesel production,碩士論文, 國立台灣大學化學工程研究所,2008 張逢源,林秋裕,淺談台灣生質能發展,台灣經濟部能源局,2008,5 婁介嶺,烷硫醇分子在矽(111)面上之自組裝特性研究,碩士論文,國立清華大學先進光源科技學程碩士班,2000 蔡幸娟,以蛋殼、水泥為催化劑轉酯大豆由為生質柴油之反應條件研究,碩士論文,國立臺中教育大學科學應用與推廣學系科學教育研究所,2002 賴英煌、邱雯藝、洪偉修,同步輻射X-ray光電子能譜在表面化學之研究,化學季刊,2002,60,381–390 簡秀真,貴金屬奈米顆粒修飾三氧化鎢奈米線陣列在太陽光下增加光電化學產氫效率,碩士論文,國立台灣大學地質科學研究所,2012 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59648 | - |
dc.description.abstract | 本研究利用含浸法製備二氧化矽負載鈮氧化物,選擇成本低的五氯化鈮為鈮前驅物,但相較於成本高的乙氧基化鈮(V),存有表面殘餘氯化物影響表面催化特性,我們在製備條件中加入三個優化步驟改善表面催化特性:第一步驟,超音波震盪使鈮分散在二氧化矽表面更加均勻,改善含浸法存在材料均勻度不佳的問題。拉曼光譜顯示1小時的震盪可以使材料均勻度提高;第二步驟水處理,利用90°C水處理去除表面殘餘氯化物,穿透式電子顯微鏡之元素分析檢測發現水處理改善材料表面殘餘氯化物的問題;第三步驟為改變鍛燒條件,用以調整鈮氧化物結構以及酸催化位,UV-Vis吸收光譜和X-ray繞射光譜的結果指出,10 wt%鈮負載之材料當鍛燒溫度超過550°C,表面產生五氧化二鈮結晶,其結晶型態為六方晶系,鍛燒溫度在500°C持溫1小時,材料表面為無晶型且結構扭曲的NbO4有利於酸催化反應。將鈮氧化物負載二氧化矽應用於甘油縮醛反應,甘油加丙酮縮醛化選擇性反應成丙酮縮甘油(Solketal),提高其經濟利益,在工業上可串起生質柴油的生產鏈。除了探討轉化率和選擇性,運用Operando拉曼即時分析監測反應,觀察分子之間的鍵結以探究反應途徑。
不同鈮負載量之批次實驗結果顯示,隨著鈮負載量升高,反應之甘油轉化率提高,15 wt%的甘油轉換率(45.6%)最高,當鈮負載量大於20 wt%,甘油轉化率也隨之下降。UV-Vis吸收光譜(Ultraviolet–Visible Spectroscopy)指出低鈮負載材料的表面為扭曲且無晶型的鈮氧化物結構,太高的鈮負載量會造成材料表面形成微小Nb2O5結晶。在酸性質分析,氨氣-程序升溫控制脫附儀(NH3- Temperature Programmed Desorption)的結果指向總酸量是造成催化的主要原因。Pyridine吸附-傅立葉轉換紅外光譜(Pyridine adsorption- Fourier Transform Infrared Spectroscopy, FTIR)結果顯示,低鈮負載量的材料只存在路易斯酸,當鈮負載量越大(15 wt%和20 wt%),材料表面同時存在布忍斯特酸位(Bronsted acid site)以及路易斯酸位(Lewis acid site)。Operando 拉曼光譜分析結果顯示布忍斯特酸位傾向於將半縮酮(Hemiketal)轉為產物。 | zh_TW |
dc.description.abstract | Silica oxide supported niobium oxide was prepared through the impregnation method. We use niobium(V) chloride as a precursor instead of niobium ethoxide which is a high-cost precursor. However, it presented a problem that strong bonding between niobium and chloride causes residual chloride compound on the surface. In the synthesis process, three optimized steps were adopted to improve surface property. First, the step of ultasonication is to disperse niobium oxide on silica for improving the surface homogeneity which is one of shortcomings in impregnation method. Raman Spectra shows that sonication for 1 hour improves the surface homogeneity. Second, DI water was used to remove surface chloride compound. Energy-dispersive X-ray spectrum shows that DI water removed the residual chloride successfully. Finally, calcined condition was changed to modified the surface niobium species for obtaining more acidity sites. UV-Vis adsorption spectrum and X-ray diffraction spectrum indicated that material calcined at 550°C in 10 wt% niobium loading exhibited the formation of Nb2O5 crystalline phase. Moreover, the material calcined 500°C for 1 hour posscesses distorted amorphous NbO4 which has more acid sites.
Silica supported niobium oxide is applied in glycerol acetalization, increasing the economic benefits of glycerol and integrating production chain of biodiesel industry. Glycerol can be acetalized with acetone to produce 5-membered ring 2,2-dimethyl-1,3-dioxolane-4-ylmethanol (solketal) and the 6-membered ring 2,2-dimethyl-1,3-dioxan-5-ol. Despite of the solketal selectivity and glycerol conversion, we use Operando Raman Spectroscopy to monitor the reaction. Operando Raman offers the interaction of molecular to understand the path of reaction. Different loading niobium supported on silica were applied in glycerol acetalization. The conversion results show that higher niobium loading causes high glycerol conversion, and 15 wt% niobium loading possesses the best glycerol conversion (45.6%). However, 30 wt% and 40 wt% have low glycerol conversions relatively. From the characteristic analysis, UV-Vis adsorption spectrum results indicated that low loading niobium materials present distorted amorphous niobium species, however, high niobium loading materials cause small niobium crystallinity on the surface. The acidity analysis includes Pyridine adsorption- Fourier Transform Infrared Spectroscopy (Pyridine adsorption-FTIR) and NH3-Temperature Programmed Desorption (NH3-TPD). The NH3-TPD result shows that the glycerol conversion related to the amount of acid sites. Pyridine adsorption-FTIR indicated that low loading niobium materials only have Lewis acid sites, and more than 15 wt% niobium loading materials posscess Br?nsted acid sites and Lewis acid sites. Operando Raman spectra during reaction indicated that Br?nsted afforded more on converting hemiacetal into production. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:31:28Z (GMT). No. of bitstreams: 1 ntu-106-R03224208-1.pdf: 15647302 bytes, checksum: 9e50ee476093c5f2dd7d3b59efaede33 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 Ι
摘要 III Abstract IV 目錄 VI 圖目錄 IX 表目錄 XII 第1章 緒論 1 1-1 研究源起 1 1-2 研究目的與內容 3 第2章 文獻回顧 5 2-1 生質柴油技術 5 2-2 甘油特性 5 2-3 縮醛反應 7 2-4 反應機制 11 2-5 催化劑 14 2-5.1 均相催化劑 14 2-5.2 非均相催化劑 15 2-6 二氧化矽負載鈮氧化物製備方法 22 2-6.1 溶膠凝膠法 22 2-6.2 含浸法 22 2-7 材料製備之參數變因 23 第3章 實驗方法與設備 25 3-1 研究架構與內容 25 3-2 催化劑製備 27 3-2.1 超音波震盪 27 3-2.2 水處理 28 3-2.3 鍛燒 28 3-2.4 不同鈮附載量 29 3-3 特性分析 30 3-3.1 X-射線繞射光譜儀 30 3-3.2 紫外光-可見光吸收光譜儀 31 3-3.3 熱重分析儀 33 3-3.4 拉曼光譜儀 34 3-3.5 高解析度場發射掃描電子顯微鏡暨能量散佈分析儀 34 3-3.6 比表面積分析儀 36 3-3.7 氨氣-程序升溫控制脫附儀 37 3-3.8 X光光電子能譜儀 38 3-3.9 Pyridine吸附-傅立葉轉換紅外光譜儀 40 3-4 甘油縮酮反應 41 3-4.1 實驗設置 41 3-4.2 氣相層析儀 42 3-4.3 Operando拉曼光譜及時分析 43 第4章 結果與討論 45 4-1 材料製備條件 45 4-1.1 超音波震盪 45 4-1.2 水處理步驟 48 4-1.3 鍛燒條件 53 4-2 不同鈮負載量 58 4-2.1 催化效率 58 4-2.2 特性分析 61 4-2.3 材料結構 67 4-3 酸位測定 68 4-4 Operando拉曼即時分析 74 4-5 反應機制 78 第5章 結論與建議 80 5-1 結論 80 5-2 建議 81 參考文獻 82 附錄 92 | |
dc.language.iso | zh-TW | |
dc.title | 二氧化矽負載鈮氧化物的製備與優化應用於催化甘油縮醛反應之研究 | zh_TW |
dc.title | Synthesis and Optimization of SiO2 Supported Niobium Oxide for the Catalytic Acetalization of Glycerol | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林進榮(Chin-Jung Lin),侯文哲(Wen-Che Hou),董崇禮(Chong-Li Dong),鄧茂華(Mao-Hua Teng),Miguel A. Banares(Miguel A. Banares) | |
dc.subject.keyword | 甘油,丙酮,含浸法,縮醛化,丙酮縮甘油,鈮氧化物, | zh_TW |
dc.subject.keyword | Glycerol,Acetone,Impregnation,Solketal,Niobium oxide, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201700577 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 地質科學研究所 | zh_TW |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 15.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。