請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59639
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏洪宇(Hung-Yu Wei) | |
dc.contributor.author | Albertor Rech | en |
dc.contributor.author | 爾柏睿 | zh_TW |
dc.date.accessioned | 2021-06-16T09:31:04Z | - |
dc.date.available | 2020-09-03 | |
dc.date.copyright | 2020-09-03 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | [1] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work. IEEE Access, 1:335–349, 2013. [2] S. Rangan, T. S. Rappaport, and E. Erkip. Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proceedings of the IEEE, 102(3):366–385, 2014. [3] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi. A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies. IEEE Communications Surveys Tutorials, 21(1):173–196, 2019. [4] M. Labib, V. Marojevic, J. H Reed, and A. I Zaghloul. Extending LTE into the unlicensed spectrum: Technical analysis of the proposed vari- ants. IEEE Communications Standards Magazine, 1(4):31–39, 2017. [5] S. Lagen, L. Giupponi, S. Goyal, N. Patriciello, B. Bojović, A. Demir, and M. Beluri. New Radio Beam-Based Access to Unlicensed Spec- trum: Design Challenges and Solutions. IEEE Communications Sur- veys Tutorials, 22(1):8–37, 2020. [6] R. Zhang, M. Wang, L. X Cai, Z. Zheng, X. Shen, L. Xie, and Liang-Liang. LTE-unlicensed: The future of spectrum aggregation for cellu- lar networks. IEEE Wireless Communications, 22(3):150–159, 2015. [7] 3GPP. Study on Licensed Assisted Access to unlicensed spec- trum. Technical Specification (TS) 36.889, 3rd Generation Partnership Project (3GPP), 06 2015. Version 13.0.0. [8] HJ Kwon, J. Jeon, A. Bhorkar, Q.Ye, H. Harada, Y.Jiang, L. Liu, S. Nagata, B.L. Ng, and T. Novlan. Licensed-assisted access to unli- censed spectrum in LTE release 13. IEEE communications magazine, 55(2):201–207, 2016. [9] C. Chen, R. Ratasuk, and A. Ghosh. Downlink performance analy- sis of LTE and WiFi coexistence in unlicensed bands with a simple listen-before-talk scheme. In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pages 1–5. IEEE, 2015. [10] Y. Gao, X. Chu, and J. Zhang. Performance Analysis of LAA and WiFi Coexistence in Unlicensed Spectrum Based on Markov Chain. In 2016 IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2016. [11] MulteFire. Available at: https://www.multefire.org/. [12] M. Labib, V. Marojevic, J. H Reed, and A.I Zaghloul. Extending LTE into the unlicensed spectrum: Technical analysis of the proposed vari- ants. IEEE Communications Standards Magazine, 1(4):31–39, 2017. [13] 3GPP. Study on NR-based Access to unlicensed spectrum. Tech- nical Specification (TS) 38.889, 3rd Generation Partnership Project (3GPP), 12 2018. Version 16.0.0. [14] 5G Americas. 5G Spectrum Recommendation. 2017. [15] ETSI. Multiple-Gigabit/s radio equipment operating in the 60 GHz band; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU. (EN 302 567 V2.1.1), 2017. [16] X. Wang, S. Mao, and M. X Gong. A survey of LTE Wi-Fi coexistence in unlicensed bands. GetMobile: Mobile Computing and Communica- tions, 20(3):17–23, 2017. [17] A. Prabhu and SR Das. Addressing deafness and hidden terminal problem in directional antenna based wireless multi-hop networks. In 2007 2nd International Conference on Communication Systems Soft- ware and Middleware, 2007. [18] S. Lagen, L. Giupponi, and N. Patriciello. LBT switching procedures for New Radio-based access to unlicensed spectrum. In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2018. [19] S. Lagen and L. Giupponi. Listen before receive for coexistence in unlicensed mmWave bands. In 2018 IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6. IEEE, 2018. [20] A. Zappone, L. Sanguinetti, G. Bacci, E. Jorswieck, and M. Debbah. Energy-Efficient Power Control: A Look at 5G Wireless Technologies. IEEE Transactions on Signal Processing, 64(7):1668–1683, 2016. [21] A. Karlsson, O. Al-Saadeh, A. Gusarov, R. V. R. Challa, S. Tombaz, and K. W. Sung. Energy-efficient 5G deployment in rural areas. In 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pages 1–7, 2016. [22] S. Yang and Y. Lin. Modeling UMTS discontinuous reception mecha- nism. IEEE Transactions on Wireless Communications, 4(1):312–319, 2005. [23] C. S Bontu and E. Illidge. DRX mechanism for power saving in LTE. IEEE Communications Magazine, 47(6):48–55, 2009. [24] S. C Jha, A. T Koc, R. Vannithamby, and M. Torlak. Adaptive DRX configuration to optimize device power saving and latency of mobile applications over LTE advanced network. In 2013 IEEE International Conference on Communications (ICC), pages 6210–6214. IEEE, 2013. [25] M. K. Maheshwari, A. Roy, and N. Saxena. DRX over LAA-LTE. A New Design and Analysis Based on Semi-Markov Model. IEEE Transactions on Mobile Computing, 18(2):276–289, 2019. [26] M. K. Maheshwari, N. Saxena M. Agiwal, and A. Roy. Directional Dis- continuous Reception (DDRX) for mmWave Enabled 5G Communi- cations. IEEE Transactions on Mobile Computing, 18(10):2330–2343, 2019. [27] 3GPP. Study on New Radio access technology; Radio interface pro- tocol aspects. Technical Specification (TS) 38.804, 3rd Generation Partnership Project (3GPP), 03 2017. Rel. 14, V1.0.0. [28] A. Huang, K. Lin, and H. Wei. Beam-Aware Cross-Layer DRX De- sign for 5G Millimeter Wave Communication System. IEEE Access, 8:77604–77617, 2020. [29] S. H. A. Shah, S. Aditya, S. Dutta, C. Slezak, and S. Rangan. Power efficient discontinuous reception in THz and mmWave wireless sys- tems. In 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 1–5. IEEE, 2019. [30] M. Polese, J. Jornet, Tommaso T. Melodia, and M. Zorzi. To- ward End-to-End, Full-Stack 6G Terahertz Networks. arXiv preprint arXiv:2005.07989, 2020. [31] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, and M. Zorzi. End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys Tutorials, 20(3):2237–2263, 2018. [32] Z. Hossain and Q. Xia andJ.M. Jornet. TeraSim: An ns-3 extension to simulate Terahertz-band communication networks. Nano Commu- nication Networks, 17:36–44, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59639 | - |
dc.description.abstract | 在即將到來的第五代(5G)蜂窩系統中,毫米波(mmWave)通信被視為一項關鍵技術,因為它們具有實現這些未來網絡所需的高數據速率的能力。但是,毫米波頻譜中的高頻需要定向波束形成以克服傳播限制。預計未來的5G蜂窩網絡將滿足非常高的系統負載的需求,因此,蜂窩運營商將嘗試使用輔助頻譜聚合技術,雙連接性或獨立的獨立非許可系統來偏離非許可頻段上的部分流量。許多設備和不同的無線通信系統(例如即將推出的802.11ay)將被允許通過mmWave頻譜的未許可部分進行傳輸,尤其是在60 GHz頻段附近。此外,mmWaves系統的高功耗和新的定向范例對當前的不連續接收(DRX)機制在用戶設備(UE)上的節能提出了挑戰。這項工作的目的是設計和評估針對未許可頻譜中獨立5G mmWave通信的新DRX協議的性能。 | zh_TW |
dc.description.abstract | Millimeter-Wave (mmWave) communications are considered as a key technology in the upcoming Fifth-Generation (5G) cellular systems because of their capability to achieve high data rates required by these future networks. However, high frequencies in the mmWave spectrum call for directional beamforming to overcome the propagation limitations. Future 5G cellular networks are expected to meet the demand of very high system load, therefore cellular operators will try to deviate part of the traffic over the unlicensed band using auxiliary spectrum aggregation techniques, dual connectivity or independent standalone unlicensed systems. Many devices and different wireless communications systems, such as the forthcoming 802.11ay, will be allowed to transmit over the unlicensed part of the mmWave spectrum, in particular around the 60 GHz band. Furthermore, high power consumption of mmWaves systems and the new directional paradigm challenge the current Discontinuous-Reception (DRX) mechanism for power saving at the User Equipment (UE). The aim of this work is to design and evaluate the performance of a new DRX protocol for standalone 5G mmWave communications in the unlicensed spectrum. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:31:04Z (GMT). No. of bitstreams: 1 U0001-1308202021284600.pdf: 4431285 bytes, checksum: 6baebece6e07d7e6a4a06935e44ce750 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 1 Introduction 1 1.1 mmWave Systems....................... 1 1.2 Energy Efficiency in mmWave Networks. . . . . . . . . . . 3 2 Background 7 2.1 LTE in the Unlicensed Spectrum .............. 8 2.2 New Radio in the Unlicensed Spectrum (NR-U) . . . . . . 9 2.2.1 Unlicensed mmWave Spectrum Allocation . . . . . 10 2.2.2 NR-U Deployment Scenarios............. 10 2.2.3 Regulatory Requirements............... 12 2.3 Energy Efficiency in mmWave Networks......... 16 2.3.1 DRX mechanisms in LTE and LAA-LTE ..... 16 2.3.2 DRX mechanisms for mmWave New Radio ...... 21 2.3.3 Differences between this work, DDRX and the licensed beam-aware DRX ............... 24 2.3.4 DRX mechanisms for Teraherz communications ..... 25 3 Beam-Aware DRX Design for NR-U mmWave Communications....... 27 3.1 Considered Scenario ..................... 28 3.1.1 LBT scheme...................... 29 3.2 The gNB’s semi-Markov model ............... 32 3.2.1 Listen-Before-Talk Delay............... 37 3.3 The UE’s DRX semi-Markov model............. 39 3.4 Performance metrics ..................... 48 3.4.1 Sleep Ratio (SR) ................... 48 3.4.2 Average Packet Delay................. 48 4 Perfomance Evaluation 53 4.1 Considered Parameters.................... 53 4.2 Busy channel probability and LBT delay . . . . . . . . . . 56 4.3 Analytical model verification and impact of the DRX cycle length ............................. 57 4.3.1 Steady state probabilities .............. 58 4.3.2 Impact of DRX cycle length on the performance metrics........................... 61 4.4 Impact of the inactivity timer length . . . . . . . . . . . . 65 4.5 NR and NR-U Beam-Aware DRX mechanisms . . . . . . . 67 5 Conclusions Future Works 71 5.1 Future Developments..................... 72 Bibliography 75 | |
dc.language.iso | en | |
dc.title | 免執照毫米波下之非連續接收省電機制 | zh_TW |
dc.title | Power Saving with Unlicensed mmWave DRX | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝鴻運(Hung-Yun Hsieh),周春婷(Chun-Ting Chou) | |
dc.subject.keyword | 省電,無牌, | zh_TW |
dc.subject.keyword | Power Saving,DRX,mmWave,Energy Efficiency,5G,Unlicensed,NR-U, | en |
dc.relation.page | 79 | |
dc.identifier.doi | 10.6342/NTU202003328 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202021284600.pdf 目前未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。