Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59634Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Wei-Lin Chen | en |
| dc.contributor.author | 陳威霖 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:30:52Z | - |
| dc.date.available | 2019-02-20 | |
| dc.date.copyright | 2017-02-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-15 | |
| dc.identifier.citation | Beebe, D. J., D. D. Denton, R. G. Radwin and J. G. Webster (1998). 'A silicon-based tactile sensor for finger-mounted applications.' IEEE Transactions on Biomedical Engineering 45(2): 151-159.
Bonato, P. (2003). 'Wearable sensors/systems and their impact on biomedical engineering.' IEEE Eng Med Biol Mag 22(3): 18-20. Boutry, C. M., A. Nguyen, Q. O. Lawal, A. Chortos, S. Rondeau-Gagne and Z. N. Bao (2015). 'A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring.' Advanced Materials 27(43): 6954-+. Cheng, M.-Y., C.-M. Tsao, Y.-Z. Lai and Y.-J. Yang (2011). 'The development of a highly twistable tactile sensing array with stretchable helical electrodes.' Sensors and Actuators A: Physical 166(2): 226-233. Dargahi, J., M. Parameswaran and S. Payandeh (2000). 'A micromachined piezoelectric tactile sensor for an endoscopic grasper - Theory, fabrication and experiments.' Journal of Microelectromechanical Systems 9(3): 329-335. Eltaib, M. and J. Hewit (2003). 'Tactile sensing technology for minimal access surgery––a review.' Mechatronics 13(10): 1163-1177. Engel, J., J. Chen, Z. Fan and C. Liu (2005). 'Polymer micromachined multimodal tactile sensors.' Sensors and Actuators A: physical 117(1): 50-61. Hao, Y. and R. Foster (2008). 'Wireless body sensor networks for health-monitoring applications.' Physiological Measurement 29(11): R27-R56. Hasegawa, Y., M. Shikida, D. Ogura, Y. Suzuki and K. Sato (2008). 'Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber.' Journal of micromechanics and microengineering 18(8): 085014. Lee, H. J., S. H. Hwang, H. N. Yoon, W. K. Lee and K. S. Park (2015). 'Heart rate variability monitoring during sleep based on capacitively coupled textile electrodes on a bed.' Sensors 15(5): 11295-11311. Mannsfeld, S. C. B., B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese and Z. N. Bao (2010). 'Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers.' Nature Materials 9(10): 859-864. Miller, S. and Z. N. Bao (2015). 'Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method.' Journal of Materials Research 30(23): 3584-3594. Mojra, A., S. Najarian, S. M. Kashani, F. Panahi and M. A. Tehrani (2012). 'A novel robotic tactile mass detector with application in clinical breast examination.' Minimally Invasive Therapy & Allied Technologies 21(3): 210-221. Nambiar, S. and J. T. Yeow (2011). 'Conductive polymer-based sensors for biomedical applications.' Biosensors and Bioelectronics 26(5): 1825-1832. Pan, L., A. Chortos, G. Yu, Y. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt and Z. Bao (2014). 'An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film.' Nature communications 5. Shiau, C. C., Y. C. Liao, Z. K. Kao, Y. C. Yeh and Y. W. Lu (2013). 'Paper-Based Flexible Taxel Device Using Electrical Contact Resistance Variation for Elasticity Measurement on Biological Objects.' Ieee Sensors Journal 13(10): 4038-4044. Shimojo, M., A. Namiki, M. Ishikawa, R. Makino and K. Mabuchi (2004). 'A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method.' IEEE Sensors journal 4(5): 589-596. Shu, Y., C. Li, Z. Wang, W. Mi, Y. Li and T.-L. Ren (2015). 'A Pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit.' Sensors 15(2): 3224-3235. Wang, A., S. He, X. Fang, X. Jin and J. Lin (1992). 'Optical Fiber Pressure Sensor Based on Photoelasticity and Its Application (Vol 10, Pg 1466, 1992).' Journal of Lightwave Technology 10(12): 2032-2032. Wang, X., Y. Gu, Z. Xiong, Z. Cui and T. Zhang (2014). 'Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals.' Advanced Materials 26(9): 1336-1342. Woo, S.-J., J.-H. Kong, D.-G. Kim and J.-M. Kim (2014). 'A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors.' Journal of Materials Chemistry C 2(22): 4415-4422. Zhang, Y.-H., C. Yang, Z.-H. Zhang, H.-W. Lin, L.-T. Liu and T.-L. Ren (2007). 'A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region.' IEEE Sensors Journal 7(12): 1742-1748. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59634 | - |
| dc.description.abstract | 我們提出了一種新穎的觸覺感測機制,利用粗糙表面的接觸電阻,在承受壓力時,兩個接觸面積變化而導致接觸電阻變化來求得壓力的數值。相對於傳統電阻式觸覺感測機制主要利用壓阻現象,而導致靈敏度受限制,我們的方法可以藉由感測接觸結構的少量變化,可提升感測器靈敏度。
此感測機制可利用於纖維布的基板上,並且使用銀為線路區域和石墨烯油墨為感測區域的兩階段網版印刷。同時,製作了三種不同導電材料組合的觸覺感測器,使其具有不同的表面粗糙度,其導電電阻分布,來最佳化這些變數對於感測器靈敏度的影響。結果發現,利用石墨烯油墨感測區表面,具有微尺度的柱狀結構,加上了玻璃纖維布基板的可壓縮性,感測器在低壓力的區域(<1 kPa-1)中有1 kPa-1 的靈敏度。 我們的觸覺感測器具有低成本,易於製造、可穿戴等優點。同時,我們利用了藍芽無線模塊和信號處理電路量測到人體的脈搏資訊的應用,另外也展示了感測器陣列在電子皮膚中的應用。而這些成果證明了我們所開發的穿戴式觸覺感測器在健康監測的應用上深具潛力。 | zh_TW |
| dc.description.abstract | A wearable tactile device on fabrics based on Electrical Contact Resistance (ECR) variation mechanism is developed for the first time. The proposed device consists of one top and one bottom substrates, which are screen-printed with conductive materials then faced-to-face assembled. Due to its exclusive features of surface roughness and material compressibility, the fabric substrate is favorable in ECR variation mechanism. The device is optimized with different conductive materials to create more pillars and further enhance the device sensitivities. Device characteristics and practical applications are investigated in monitoring human wrist pulses with wireless module and smartphone, showing its capability in fast response and high sensitivity for internet-of-thing and medical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:30:52Z (GMT). No. of bitstreams: 1 ntu-106-R03631003-1.pdf: 2489339 bytes, checksum: 4e7ec531fef6ca05eb82bfdbcc559d8e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii List of Figures v List of Tables x Chapter 1 Introduction 1 1.1 Health monitoring 1 1.2 Tactile sensor 4 1.3 Organization of this work 5 Chapter 2 Literature Review 6 2.1 Tactile sensor 6 2.1.1 Capacitive tactile sensor 9 2.1.2 Resistive type tactile sensors 11 2.1.3 Challenges in Tactile Sensors 13 2.2 Health monitoring and measurement 14 Chapter 3 Materials and Methods 18 3.1 Tactile sensor principle based on Electrical Contact Resistance(ECR) 18 3.2 Tactile sensor fabrication and design 22 3.3 Device configuration and measurement 24 3.4 Signal proceesing circuit and Scanning circuit 25 Chapter 4 Result and Discussion 31 4.1 Sensor unit characterization 31 4.2 Application 1 : Pulse monitoring 40 4.3 Applization 2 : Sensor array demonstration 45 4.4 Conclusion 49 Chapter 5 Conclusion 50 5.1 Conclusions 50 5.2 Prospective 51 Reference 52 Appendix A: Layout of signal processing circuit 55 Appendix B: Specs of the used elements 56 | |
| dc.language.iso | en | |
| dc.subject | 電接觸電阻 | zh_TW |
| dc.subject | 電接觸電阻 | zh_TW |
| dc.subject | 石墨烯油墨 | zh_TW |
| dc.subject | 銀膠 | zh_TW |
| dc.subject | 玻璃纖維布 | zh_TW |
| dc.subject | 銀膠 | zh_TW |
| dc.subject | 石墨烯油墨 | zh_TW |
| dc.subject | 玻璃纖維布 | zh_TW |
| dc.subject | contact resistance | en |
| dc.subject | contact resistance | en |
| dc.subject | Glass Fiber | en |
| dc.subject | graphene ink | en |
| dc.subject | silver ink | en |
| dc.subject | Glass Fiber | en |
| dc.subject | graphene ink | en |
| dc.subject | silver ink | en |
| dc.title | 高靈敏度穿戴式觸覺感測器於健康監測之運用 | zh_TW |
| dc.title | A Wearable Tactile Sensor Based on Electrical-Contact-Resistance (ECR) Variation with High Sensitivity for Health Monitoring | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊承鑫(Cheng-Hsin Chuang),吳志明(Chih-Ming Wu),廖英志(Ying-Chin Liao),陳世芳(Shih-Fang Chen) | |
| dc.subject.keyword | 玻璃纖維布,銀膠,石墨烯油墨,電接觸電阻, | zh_TW |
| dc.subject.keyword | Glass Fiber,silver ink,graphene ink,contact resistance, | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU201700653 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 2.43 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
