Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59633
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳惠文(Huei-Wen Chen)
dc.contributor.authorHsueh-Hua Chenen
dc.contributor.author陳雪華zh_TW
dc.date.accessioned2021-06-16T09:30:50Z-
dc.date.available2022-02-24
dc.date.copyright2017-02-24
dc.date.issued2017
dc.date.submitted2017-02-16
dc.identifier.citation1. Siegel, R.L., Miller, K.D. & Jemal, A. Cancer statistics, 2016. CA Cancer J Clin 66, 7-30 (2016).
2. 衛生福利部國民健康署 民國 101 年侵襲癌發生率及死亡率. 101年癌症登記年報 1, 3-5 (2012).
3. Preusser, M. et al. Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol 123, 205-222 (2012).
4. Nguyen, A., Yoshida, M., Goodarzi, H. & Tavazoie, S.F. Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. Nat Commun 7, 11246 (2016).
5. Song, W.S. et al. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc 79, 538-545 (2016).
6. O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J.E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110 (2007).
7. Li, X.S., Xu, Q., Fu, X.Y. & Luo, W.S. ALDH1A1 overexpression is associated with the progression and prognosis in gastric cancer. BMC Cancer 14, 705 (2014).
8. Choi, Y.H. & Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des 20, 793-807 (2014).
9. White, A.C. & Lowry, W.E. Refining the role for adult stem cells as cancer cells of origin. Trends Cell Biol 25, 11-20 (2015).
10. Grimwade, D. & Enver, T. Acute promyelocytic leukemia: where does it stem from? Leukemia 18, 375-384 (2004).
11. Hino, O. & Kobayashi, T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci (2016).
12. Shih, L.Y. et al. Internal tandem duplication and Asp835 mutations of the FMS-like tyrosine kinase 3 (FLT3) gene in acute promyelocytic leukemia. Cancer 98, 1206-1216 (2003).
13. Takahashi, S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol 4, 36 (2011).
14. De Kouchkovsky, I. & Abdul-Hay, M. 'Acute myeloid leukemia: a comprehensive review and 2016 update'. Blood Cancer J 6, e441 (2016).
15. Blanpain, C. Tracing the cellular origin of cancer. Nat Cell Biol 15, 126-134 (2013).
16. Perez-Losada, J. & Balmain, A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer 3, 434-443 (2003).
17. Shiga, K. et al. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 7, 2443-2458 (2015).
18. Turley, S.J., Cremasco, V. & Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15, 669-682 (2015).
19. Byron, A., Humphries, J.D. & Humphries, M.J. Defining the extracellular matrix using proteomics. Int J Exp Pathol 94, 75-92 (2013).
20. Beachley, V.Z. et al. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat Methods 12, 1197-1204 (2015).
21. Muranen, T. et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun 8, 13989 (2017).
22. Trappmann, B. et al. Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11, 642-649 (2012).
23. Wang, Y. et al. ECM proteins in a microporous scaffold influence hepatocyte morphology, function, and gene expression. Sci Rep 6, 37427 (2016).
24. Lu, P., Weaver, V.M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196, 395-406 (2012).
25. Spinelli, F.M., Vitale, D.L., Demarchi, G., Cristina, C. & Alaniz, L. The immunological effect of hyaluronan in tumor angiogenesis. Clin Transl Immunology 4, e52 (2015).
26. Hanahan, D. & Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 (2012).
27. Kalluri, R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 16, 582-598 (2016).
28. Chen, W.J. et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5, 3472 (2014).
29. Yuan, J. et al. Acquisition of epithelial-mesenchymal transition phenotype in the tamoxifen-resistant breast cancer cell: a new role for G protein-coupled estrogen receptor in mediating tamoxifen resistance through cancer-associated fibroblast-derived fibronectin and beta1-integrin signaling pathway in tumor cells. Breast Cancer Res 17, 69 (2015).
30. Peng, D.H. et al. ZEB1 induces LOXL2-mediated collagen stabilization and deposition in the extracellular matrix to drive lung cancer invasion and metastasis. Oncogene (2016).
31. Meads, M.B., Gatenby, R.A. & Dalton, W.S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9, 665-674 (2009).
32. Lee, J.S. et al. STAT3-mediated IGF-2 secretion in the tumour microenvironment elicits innate resistance to anti-IGF-1R antibody. Nat Commun 6, 8499 (2015).
33. Pampaloni F, R.E., Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8, 839-845 (2007).
34. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3, 711-715 (2004).
35. Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol 273, C1109-1123 (1997).
36. Shaheen, S., Ahmed, M., Lorenzi, F. & Nateri, A.S. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev 12, 492-499 (2016).
37. Cesarz, Z. & Tamama, K. Spheroid Culture of Mesenchymal Stem Cells. Stem Cells Int 2016, 9176357 (2016).
38. Rebucci, M. & Michiels, C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem Pharmacol 85, 1219-1226 (2013).
39. Di Nicolantonio, F. et al. Cancer cell adaptation to chemotherapy. BMC Cancer 5, 78 (2005).
40. Lee, J.M. et al. A three-dimensional microenvironment alters protein expression and chemosensitivity of epithelial ovarian cancer cells in vitro. Lab Invest 93, 528-542 (2013).
41. Bourguignon, L.Y., Shiina, M. & Li, J.J. Hyaluronan-CD44 interaction promotes oncogenic signaling, microRNA functions, chemoresistance, and radiation resistance in cancer stem cells leading to tumor progression. Adv Cancer Res 123, 255-275 (2014).
42. Bourguignon, L.Y., Earle, C., Wong, G., Spevak, C.C. & Krueger, K. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31, 149-160 (2012).
43. Bourguignon, L.Y., Wong, G., Earle, C. & Chen, L. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem 287, 32800-32824 (2012).
44. Wang, K. et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater 5, 3173-3181 (2016).
45. Li, Z. et al. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells. Mol Med Rep 7, 1945-1949 (2013).
46. Bhattarai, N., Gunn, J. & Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62, 83-99 (2010).
47. Pavinatto, F.J. et al. Interaction of chitosan with cell membrane models at the air-water interface. Biomacromolecules 8, 1633-1640 (2007).
48. Chen, Y.L. et al. Synergistic effects of glycated chitosan with high-intensity focused ultrasound on suppression of metastases in a syngeneic breast tumor model. Cell Death Dis 5, e1178 (2014).
49. Li, X. et al. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013, 387023 (2013).
50. Constantin, M., Bucatariu, S.M., Doroftei, F. & Fundueanu, G. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydr Polym 157, 493-502 (2017).
51. Liu, L., Tang, X., Wang, Y. & Guo, S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int J Pharm 414, 6-15 (2011).
52. Cheng, N.C., Wang, S. & Young, T.H. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33, 1748-1758 (2012).
53. Huang, G.S., Dai, L.G., Yen, B.L. & Hsu, S.H. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials 32, 6929-6945 (2011).
54. Huang, Y.J. & Hsu, S.H. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids. Biomaterials 35, 10070-10079 (2014).
55. Gascard, P. & Tlsty, T.D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30, 1002-1019 (2016).
56. Bremnes, R.M. et al. The role of tumor stroma in cancer progression and prognosis: emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J Thorac Oncol 6, 209-217 (2011).
57. Chen, Y.T. et al. R26R-GR: a Cre-activable dual fluorescent protein reporter mouse. PLoS One 7, e46171 (2012).
58. Hong, J.B. et al. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells. PLoS One 9, e89396 (2014).
59. Ishiyama, M., Miyazono, Y., Sasamoto, K., Ohkura, Y. & Ueno, K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44, 1299-1305 (1997).
60. Kumar, S., Raina, K., Agarwal, C. & Agarwal, R. Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget 5, 4972-4989 (2014).
61. Zaynagetdinov, R. et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res 75, 1624-1634 (2015).
62. Ye, Z.J. et al. Differentiation and recruitment of IL-22-producing helper T cells stimulated by pleural mesothelial cells in tuberculous pleurisy. Am J Respir Crit Care Med 185, 660-669 (2012).
63. Ito, M. et al. MicroRNA-150 inhibits tumor invasion and metastasis by targeting the chemokine receptor CCR6, in advanced cutaneous T-cell lymphoma. Blood 123, 1499-1511 (2014).
64. Tzeng, H.E. et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond) 129, 147-158 (2015).
65. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707-1710 (1992).
66. Ye, Z.J. et al. Interleukin 22-producing CD4+ T cells in malignant pleural effusion. Cancer Lett 326, 23-32 (2012).
67. Kumar S, R.K., Agarwal C, Agarwal R Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals. Oncotarget 5(13), 4972-4989.
68. Navab, R. et al. Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proc Natl Acad Sci U S A 108, 7160-7165 (2011).
69. Lai, J. et al. Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer. J Biol Chem 278, 23107-23117 (2003).
70. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6, 530-541 (2005).
71. Fraser, J.R., Laurent, T.C. & Laurent, U.B. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242, 27-33 (1997).
72. Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A 104, 11298-11303 (2007).
73. Lee, M. et al. Difference in suitable mechanical properties of three-dimensional, synthetic scaffolds for self-renewing mouse embryonic stem cells of different genetic backgrounds. J Biomed Mater Res B Appl Biomater (2016).
74. Xu, K. et al. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Acta Biomater 24, 159-171 (2015).
75. Chang, T.S. et al. Activation of IL6/IGFIR confers poor prognosis of HBV-related hepatocellular carcinoma through induction of OCT4/NANOG expression. Clin Cancer Res 21, 201-210 (2015).
76. Zhang, D. et al. Regulation of SOD2 and beta-arrestin1 by interleukin-6 contributes to the increase of IGF-1R expression in docetaxel resistant prostate cancer cells. Eur J Cell Biol 93, 289-298 (2014).
77. Lee, J.H. et al. APBB1 reinforces cancer stem cell and epithelial-to-mesenchymal transition by regulating the IGF1R signaling pathway in non-small-cell lung cancer cells. Biochem Biophys Res Commun 482, 35-42 (2017).
78. Yao, C. et al. IGF/STAT3/NANOG/Slug Signaling Axis Simultaneously Controls Epithelial-Mesenchymal Transition and Stemness Maintenance in Colorectal Cancer. Stem Cells 34, 820-831 (2016).
79. Han, Y., Luo, Y., Zhao, J., Li, M. & Jiang, Y. Overexpression of c-Met increases the tumor invasion of human prostate LNCaP cancer cells in vitro and in vivo. Oncol Lett 8, 1618-1624 (2014).
80. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15, 178-196 (2014).
81. Pore, M. et al. Cancer Stem Cells, Epithelial to Mesenchymal Markers, and Circulating Tumor Cells in Small Cell Lung Cancer. Clin Lung Cancer 17, 535-542 (2016).
82. Kesharwani, P., Banerjee, S., Padhye, S., Sarkar, F.H. & Iyer, A.K. Hyaluronic Acid Engineered Nanomicelles Loaded with 3,4-Difluorobenzylidene Curcumin for Targeted Killing of CD44+ Stem-Like Pancreatic Cancer Cells. Biomacromolecules 16, 3042-3053 (2015).
83. Lee, I.C., Chuang, C.C. & Wu, Y.C. Niche Mimicking for Selection and Enrichment of Liver Cancer Stem Cells by Hyaluronic Acid-Based Multilayer Films. ACS Appl Mater Interfaces 7, 22188-22195 (2015).
84. Lai, J.P., Sandhu, D.S., Shire, A.M. & Roberts, L.R. The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 39, 149-158 (2008).
85. Xu, G. et al. Sulfatase 1 (hSulf-1) reverses basic fibroblast growth factor-stimulated signaling and inhibits growth of hepatocellular carcinoma in animal model. Oncotarget 5, 5029-5039 (2014).
86. Kalus, I. et al. Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions. PLoS One 10, e0139853 (2015).
87. Bao, L. et al. MicroRNA-21 suppresses PTEN and hSulf-1 expression and promotes hepatocellular carcinoma progression through AKT/ERK pathways. Cancer Lett 337, 226-236 (2013).
88. Zent, R. & Pozzi, A. Cell-extracellular matrix interactions in cancer. (Springer, New York; 2010).
89. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat Cell Biol 9, 858-867 (2007).
90. Ivaska, J. & Heino, J. Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes. Cell Tissue Res 339, 111-120 (2010).
91. Huang, C. et al. Altered Cell Cycle Arrest by Multifunctional Drug-Loaded Enzymatically-Triggered Nanoparticles. ACS Appl Mater Interfaces 8, 1360-1370 (2016).
92. Zhao, Y. et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci 15, 17565-17576 (2014).
93. Sun, C.C., Qu, X.J. & Gao, Z.H. Arginine-Glycine-Aspartate-Binding Integrins as Therapeutic and Diagnostic Targets. Am J Ther 23, e198-207 (2016).
94. Boger, C. et al. Integrins alphavbeta3 and alphavbeta5 as prognostic, diagnostic, and therapeutic targets in gastric cancer. Gastric Cancer 18, 784-795 (2015).
95. Shin, Y.C. et al. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates. J Funct Biomater 6, 367-378 (2015).
96. Mahoney, C.L. et al. LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br J Cancer 100, 370-375 (2009).
97. Yoon, Y.K. et al. KRAS mutant lung cancer cells are differentially responsive to MEK inhibitor due to AKT or STAT3 activation: implication for combinatorial approach. Mol Carcinog 49, 353-362 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59633-
dc.description.abstract腫瘤幹細胞(Cancer stem cells, CSCs)是腫瘤細胞中,特別具有自我更新、腫瘤細胞分化、腫瘤起始能力以及抗藥性的亞群。因此,開發出針對腫瘤幹細胞的標靶藥物被認為是治療癌症新策略的關鍵。腫瘤幹細胞的維持主要是藉由在腫瘤微環境中腫瘤相關纖維母細胞作為餵養細胞,餵養細胞能壯大腫瘤幹細胞群體並促進腫瘤幹細胞相關基因的表現。腫瘤幹細胞與腫瘤相關纖維母細胞共培養系統可有助於腫瘤幹細胞標靶藥物的篩選。然而,須由病人檢體培養的腫瘤相關纖維母細胞,其來源受個體差異而影響腫瘤幹細胞及藥物篩選的效力與再現性。本研究中,目的是要建立一個無餵養細胞的腫瘤幹細胞培養系統。基於轉錄體學與細胞激素的蛋白質維陣列分析,我們從腫瘤幹細胞與腫瘤相關纖維母細胞共培養後收集到的細胞共培養液所含的細胞激素分析中,找出了幾個細胞激素,這些細胞激素存在於腫瘤微環境中,能有助於促進與維持腫瘤幹細胞的幹性基因。隨後,我們試圖從這些細胞激素中,以單獨及多個組合的方式,找到能維持腫瘤幹細胞特性的細胞激素組合。我們發現IGF-1結合IL-6可以顯著增加腫瘤球數和促進Nanog基因表達,這種組合也可以改善腫瘤幹細胞的透明質酸立體細胞培養盤。我們的結果說明通過使用IGF-1和IL-6細胞激素組合來維持腫瘤幹細胞特性的無餵養細胞培養系統是可行的,而此系統有助於建立腫瘤幹細胞的標靶藥物篩選系統。zh_TW
dc.description.abstractCancer stem cells (CSCs) are sub-populations of tumor cells with the properties of self-renewal, clonal tumor initiation ability, drug-resistance, and for tumor initiation. Hence, targeting CSCs has been suggested as the key for development of new treatment strategy to cure cancer. CSCs reside in the microenvironment, which are majorly supported via the cancer-associated fibroblasts (CAF), as the feeder cells. The feeder cells could enrich the CSCs population and promote the stemness-associated gene expression in the CSC populations. The co-culture system is helpful to establish a model for CSC-targeting drug screening. However, the sources of CAFs and the heterogeneity of such stromal cells might affect the CSC and the drug-screening efficacy and reproducibility. Here, we wanted to setup a feeder-free culture system for CSC. Base on the CSCs/CAFs co-culture system, we have identified the CSCs-dependent micro-environmental factors, which may enrich and maintain their “stemness” through identifying the cytokine profiling in the co-culture condition medium. Then, we tried to find the suitable combination of CSCs-dependent cytokines for establishing a feeder free culture system of lung CSCs. Base on the transcriptomic analysis and protein cytokine array, several candidate cytokines were performed to examine the individual and combinatory effects on maintaining the CSCs characteristics. ry to find the suitable combination of different cytokines for establishing a feeder free culture system of lung CSCs. Here, we found IGF-1 combined with IL-6 could significantly increase the tumorous sphere numbers and promote Nanog gene expression. Such combination could also improve the CSCs 3-D culture in the HA-chitosan Plates. Above all, our results show the promising to maintain CSCs in the feeder-free culture system by using IGF-1 and IL-6 combination. This model could be helpful for establish the drug screening system for targeting on CSCs.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:30:50Z (GMT). No. of bitstreams: 1
ntu-106-R03447010-1.pdf: 7922682 bytes, checksum: 2648b4bf85423178b75f81e0b69a1dcf (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
口試委員會審定書 .......................................................................................................................... i
致謝 .................................................................................................................. ii
中文摘要 ........................................................................................................... iii
ABSTRACT ....................................................................................................... v
目錄 .................................................................................................................. vii
圖索引 ............................................................................................................... ix
表索引 ............................................................................................................... x
第一章 緒論……................................................................................................... 1
1.1 居高不下的肺癌死亡率…………….................................................................... 1
1.2 腫瘤幹細胞(Cancer stem cell)的發現…………………………..………………………….... 1
1.3 腫瘤微環境(Tumor microenvironment) ....................................................... 3
1.4 抗癌藥物篩選………………………………………...................................................... 4
1.5 幾丁質(Chitosan)、透明質酸(Hyaluronic acid, HA)與CD44…........................ 6
1.6 實驗目的……….............................................................................................. 8
第二章 材料與方法………...................................................................................... 10
2.1 實驗材料...................................................................................................... 10
2.1.1 肺癌細胞株................................................................................................ 10
2.1.2 藥品與試劑……………................................................................................... 11
2.1.3 儀器與設備............................................................................................... 13
2.2 實驗方法………………………………………............................................................. 13
2.2.1 分離共培養的腫瘤幹細胞與腫瘤相關纖維母細胞…………………………................ 13
2.2.2 收集Co-culture medium/Condition medium……………………………………..….. 14
2.2.3 細胞毒性試驗……………………………………………………………………………………...… 14
2.2.4 測試的細胞激素組別與濃度與給予細胞激素後的基因表現實驗流程................15
2.2.5 Sphere forming assay………………………………………………………………………..… 15
2.2.6 統計方法…………………………………………………………………………………………….... 16
第三章 結果………………………............................................................................... 16
3.1. 初步挑選可能影響腫瘤細胞幹性的細胞激素(cytokine) ……………………….......... 16
3.2. 給予挑選出來的細胞激素(Cytokine)是否能誘發腫瘤的幹細胞特性(Stemness) ………………………………………………………………………………………………………................. 17
3.3. 挑選出的細胞激素對腫瘤幹細胞生長特性(Tumorigenicity)的影響………........... 17
3.4. 蛋白質表現結果…………………………………………………………………………………….…...20
3.5. 細胞外基質的影響………………………………………………………………………………..…… 20
3.6. 3D culture………………………………………………..……………………………….……………. 22
第四章 結論……………………………………………………………………………………………….……. 23
第五章 結論與未來展望………………………………………………………………………………...…. 26
第六章 參考文獻……………………………………………………………………………………………..…29
圖附錄
圖1.1 螢光顯微鏡下的UGM細胞株…………………………………………………………............. 37
圖2.1 分離共培養的腫瘤幹細胞與腫瘤相關纖維母細胞…………………………................ 38
圖3-1. 從腫瘤相關纖維母細胞與腫瘤幹細胞共培養前後的基因微陣列(Affymatrix Gene Microarray)數據中挑選出的十六個基因,在兩種細胞共培養前後的變化…………….... 39
圖3-2. 以即時定量聚合酶連鎖反應分析給予細胞激素刺激後,幹細胞基因Nanog表現
....……………………………………………………………………………………….……………............…. 41
圖3-3. 以sphere formation測試細胞激素對幹細胞特性的影響………………….......….. 43
圖3-4. 不同的肺癌細胞株A549、H1975及 CLS1的sphere formation實驗來測試細胞激素組合………………………………………………………………………………………………............…. 44
圖3-5. 調整IGF-1、IGF-2與IL-6細胞激素組合中,IGF-1與IGF-2的組合濃度,瞭解IGF-1與IGF-2濃度調降後,腫瘤細胞球形成數量的變化……………………….......................... 45
圖3-6. 使用螢光細胞結合high content screening system分析IGF-1、IGF-2與IL-6組合的spheroid數量及面積……………………………………………………………………………........... 47
圖3-7. 加入STAT3與PI3K抑制劑對腫瘤細胞球的影響………………………………….......… 48
圖3-8. 給予IGF-1 10 ng/m+ IL-6 20 ng/mL細胞激素刺激後的STAT3、pSTAT3、Nanog蛋白質表現…………………………………………………………………………………………….. 49
圖3-9a-b. Sulf1毒性測試與Sulf1對細胞激素刺激腫瘤細胞球形成的影響……..........… 50
圖3-10. 透明質酸-幾丁質立體培養盤在不同塗層時所培養出的細胞形態…................. 52
圖3-11. 不同細胞濃度在不同濃度的HA修飾下,形成的Tumor spheroids…...........…. 53
圖3-12. 結合細胞激素與立體細胞培養盤的Sphere formation實驗……………….........… 56
表附錄
附表3-1. 將腫瘤相關纖維母細胞 (Cancer-associated fibroblasts, CAFs)與腫瘤幹細胞(Cancer stem cells, CSCs)及兩種細胞共培養後,有顯著變化的十六個基因的primer序列………………………………………………………………………………………………………….............. 57
dc.language.isozh-TW
dc.subject腫瘤幹細胞zh_TW
dc.subject腫瘤相關纖維母細胞zh_TW
dc.subject腫瘤幹細胞zh_TW
dc.subject抗腫瘤幹細胞藥物快速篩選平台zh_TW
dc.subject無餵養細胞培養系統zh_TW
dc.subject抗腫瘤幹細胞藥物快速篩選平台zh_TW
dc.subject腫瘤微環境zh_TW
dc.subject腫瘤相關纖維母細胞zh_TW
dc.subject腫瘤微環境zh_TW
dc.subject無餵養細胞培養系統zh_TW
dc.subjectCancer stem cellen
dc.subjectCancer-associated fibroblasten
dc.subjectMicroenvironmenten
dc.subject3D cultureen
dc.subjectIGF-1en
dc.subjectIL-6en
dc.subjectCancer stem cellen
dc.subjectCancer-associated fibroblasten
dc.subjectMicroenvironmenten
dc.subject3D cultureen
dc.subjectIGF-1en
dc.subjectIL-6en
dc.title肺癌幹細胞株之無餵養細胞培養系統zh_TW
dc.titleFeeder Free Culture System For Lung Cancer Stem Cellsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰元(Thai-Yen Ling),徐善慧(Shan-hui Hsu),陳健尉(Jan-Way Chen)
dc.subject.keyword腫瘤幹細胞,腫瘤相關纖維母細胞,腫瘤微環境,抗腫瘤幹細胞藥物快速篩選平台,無餵養細胞培養系統,zh_TW
dc.subject.keywordCancer stem cell,Cancer-associated fibroblast,Microenvironment,3D culture,IGF-1,IL-6,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201700641
dc.rights.note有償授權
dc.date.accepted2017-02-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved