Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59624
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君
dc.contributor.authorYi-Dai Linen
dc.contributor.author林乙岱zh_TW
dc.date.accessioned2021-06-16T09:30:27Z-
dc.date.available2020-02-20
dc.date.copyright2017-02-20
dc.date.issued2017
dc.date.submitted2017-02-17
dc.identifier.citation1. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon P‐N Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, 676-677.
2. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar Cell Efficiency Tables (Version 45). Progress in Photovoltaics: Research and Applications 2015, 23, 1-9.
3. Carlson, D. E.; Wronski, C. R., Amorphous Silicon Solar Cell. Applied Physics Letters 1976, 28, 671-673.
4. Yue, G.; Yan, B.; Ganguly, G.; Yang, J.; Guha, S.; Teplin, C. W., Material Structure and Metastability of Hydrogenated Nanocrystalline Silicon Solar Cells. Applied Physics Letters 2006, 88, 263507.
5. Gobat, A. R.; Lamorte, M. F.; McIver, G. W., Characteristics of High-Conversion-Efficiency Gallium-Arsenide Solar Cells. IRE Transactions on Military Electronics 1962, MIL-6, 20-27.
6. Nobuo, N.; Hitoshi, M.; Kazufumi, Y.; Seiji, I.; Yasuhiro, H., Ceramic Thin Film Cdte Solar Cell. Japanese Journal of Applied Physics 1976, 15, 2281.
7. Devaney, W. E.; Chen, W. S.; Stewart, J. M.; Mickelsen, R. A., Structure and Properties of High Efficiency Zno/Cdzns/Cuingase<Sub>2</Sub> Solar Cells. IEEE Transactions on Electron Devices 1990, 37, 428-433.
8. Rech, B.; Wagner, H., Potential of Amorphous Silicon for Solar Cells. Applied Physics A 1999, 69, 155-167.
9. King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H., 40% Efficient Metamorphic Gainp/Gainas/Ge Multijunction Solar Cells. Applied Physics Letters 2007, 90, 183516.
10. Kumaresan, P.; Vegiraju, S.; Ezhumalai, Y.; Yau, S. L.; Kim, C.; Lee, W.-H.; Chen, M.-C., Fused-Thiophene Based Materials for Organic Photovoltaics and Dye-Sensitized Solar Cells. Polymers 2014, 6, 2645-2669.
11. Gratzel, M., Photoelectrochemical Cells. Nature 2001, 414, 338-344.
12. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131, 6050-6051.
13. https://upload.wikimedia.org/wikipedia/commons/thumb/c/c4/Solar_cell_equivale nt_circuit.svg/2000px-Solar_cell_equivalent_circuit.svg.png [Accessed: 25 Jun. 2016]
14. Fonash, S. J., Chapter One - Introduction. In Solar Cell Device Physics (Second Edition), Academic Press: Boston, 2010; pp 1-8.
15. Snaith, H. J., Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters 2013, 4, 3623-3630.
16. Goldschmidt, V. M., Die Gesetze Der Krystallochemie. Naturwissenschaften 1926, 14, 477-485.
17. Kim, H.; Lim, K.-G.; Lee, T.-W., Planar Heterojunction Organometal Halide Perovskite Solar Cells: Roles of Interfacial Layers. Energy & Environmental Science 2016, 9, 12-30.
18. Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A. M., Conducting Tin Halides with a Layered Organic-Based Perovskite Structure. Nature 1994, 369, 467-469.
19. Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials 2014, 26, 1584-1589.
20. Kenichiro, T.; Takashi, K., Bandgap and Exciton Binding Energies in Lead-Iodide-Based Natural Quantum-Well Crystals. Science and Technology of Advanced Materials 2003, 4, 599.
21. Hamilton, D. S.; Meltzer, R. S.; Sturge, M. D.; Ishihara, T., Optical Properties of PbI-Based Perovskite Structures. Journal of Luminescence 1994, 60, 269-274.
22. Hirasawa, M.; Ishihara, T.; Goto, T.; Uchida, K.; Miura, N., Magnetoabsorption of the Lowest Exciton in Perovskite-Type Compound (CH3NH3)PbI3. Physica B: Condensed Matter 1994, 201, 427-430.
23. Zhang, W.; Saliba, M.; Stranks, S. D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H. J., Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Letters 2013, 13, 4505-4510.
24. D’Innocenzo, V.; Grancini, G.; Alcocer, M. J. P.; Kandada, A. R. S.; Stranks, S. D.; Lee, M. M.; Lanzani, G.; Snaith, H. J.; Petrozza, A., Excitons Versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nature Communications 2014, 5.
25. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 2011, 3, 4088-4093.
26. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2.
27. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M., Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies. Nature 1998, 395, 583-585.
28. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar Cell Efficiency Tables (Version 46). Progress in Photovoltaics 2015, 23, 805-812.
29. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
30. Bi, D.; Moon, S.-J.; Haggman, L.; Boschloo, G.; Yang, L.; Johansson, E. M. J.; Nazeeruddin, M. K.; Gratzel, M.; Hagfeldt, A., Using a Two-Step Deposition Technique to Prepare Perovskite (CH3NH3PbI3) for Thin Film Solar Cells Based on ZrO2 and TiO2 Mesostructures. RSC Advances 2013, 3, 18762-18766.
31. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M., Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature 2013, 499, 316-319.
32. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nature Nanotechnology 2014, 9, 927-932.
33. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent Engineering for High-Performance Inorganic–Organic Hybrid Perovskite Solar Cells. Nature Materials 2014, 13, 897-903.
34. Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015, 517, 476-480.
35. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015.
36. Xing, G.; Mathews, N.; Sun, S.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science 2013, 342, 344-347.
37. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 2013, 342, 341-344.
38. Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J., Electron-Hole Diffusion Lengths > 175 Μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science 2015, 347, 967-970.
39. Meng, L.; You, J.; Guo, T.-F.; Yang, Y., Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research 2016, 49, 155-165.
40. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2013, 25, 3727-3732.
41. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 2013, advance online publication.
42. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y., Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 2014, 345, 542-546.
43. Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal Halide Perovskite Solar Cells: Degradation and Stability. Energy & Environmental Science 2016, 9, 323-356.
44. Yella, A.; Heiniger, L.-P.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters 2014, 14, 2591-2596.
45. Conings, B.; Baeten, L.; Jacobs, T.; Dera, R.; D’Haen, J.; Manca, J.; Boyen, H.-G., An Easy-to-Fabricate Low-Temperature TiO2 Electron Collection Layer for High Efficiency Planar Heterojunction Perovskite Solar Cells. APL Materials 2014, 2, 081505.
46. Liu, D.; Gangishetty, M. K.; Kelly, T. L., Effect of CH3NH3PbI3 Thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells. Journal of Materials Chemistry A 2014, 2, 19873-19881.
47. Liu, D.; Kelly, T. L., Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics 2014, 8, 133-138.
48. Zuo, L.; Gu, Z.; Ye, T.; Fu, W.; Wu, G.; Li, H.; Chen, H., Enhanced Photovoltaic Performance of CH3NH3PbI3 Perovskite Solar Cells through Interfacial Engineering Using Self-Assembling Monolayer. Journal of the American Chemical Society 2015, 137, 2674-2679.
49. Tseng, Z.-L.; Chiang, C.-H.; Wu, C.-G., Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Scientific Reports 2015, 5, 13211.
50. Wang, L.; Fu, W.; Gu, Z.; Fan, C.; Yang, X.; Li, H.; Chen, H., Low Temperature Solution Processed Planar Heterojunction Perovskite Solar Cells with a CdSe Nanocrystal as an Electron Transport/Extraction Layer. Journal of Materials Chemistry C 2014, 2, 9087-9090.
51. Song, J.; Zheng, E.; Bian, J.; Wang, X.-F.; Tian, W.; Sanehira, Y.; Miyasaka, T., Low-Temperature SnO2-Based Electron Selective Contact for Efficient and Stable Perovskite Solar Cells. Journal of Materials Chemistry A 2015, 3, 10837-10844.
52. Wang, K.; Shi, Y.; Dong, Q.; Li, Y.; Wang, S.; Yu, X.; Wu, M.; Ma, T., Low-Temperature and Solution-Processed Amorphous WOx as Electron-Selective Layer for Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6, 755-759.
53. Ryu, S.; Seo, J.; Shin, S. S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Seok, S. I., Fabrication of Metal-Oxide-Free CH3NH3PbI3 Perovskite Solar Cells Processed at Low Temperature. Journal of Materials Chemistry A 2015, 3, 3271-3275.
54. Sun, S.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G.; Sum, T. C.; Lam, Y. M., The Origin of High Efficiency in Low-Temperature Solution-Processable Bilayer Organometal Halide Hybrid Solar Cells. Energy & Environmental Science 2014, 7, 399-407.
55. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano 2014, 8, 1674-1680.
56. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J., Efficient Organometal Trihalide Perovskite Planar-Heterojunction Solar Cells on Flexible Polymer Substrates. Nature Communications 2013, 4.
57. Malinkiewicz, O.; Yella, A.; Lee, Y. H.; Espallargas, G. M.; Graetzel, M.; Nazeeruddin, M. K.; Bolink, H. J., Perovskite Solar Cells Employing Organic Charge-Transport Layers. Nature Photonics 2014, 8, 128-132.
58. Lin, Q.; Armin, A.; Nagiri, R. C. R.; Burn, P. L.; Meredith, P., Electro-Optics of Perovskite Solar Cells. Nature Photonics 2015, 9, 106-112.
59. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J., Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells. Nature Communications 2015, 6.
60. You, J., et al., Improved Air Stability of Perovskite Solar Cells Via Solution-Processed Metal Oxide Transport Layers. Nature Nanotechnology 2016, 11, 75-81.
61. Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J., Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Advanced Materials 2014, 26, 4107-4113.
62. Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y., High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Advanced Materials 2015, 27, 695-701.
63. Park, J. H., et al., Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type Nio Electrode Formed by a Pulsed Laser Deposition. Advanced Materials 2015, 27, 4013-4019.
64. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-Less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency. Energy & Environmental Science 2015, 8, 1602-1608.
65. Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S., Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society 2014, 136, 13249-13256.
66. Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J., Large Fill-Factor Bilayer Iodine Perovskite Solar Cells Fabricated by a Low-Temperature Solution-Process. Energy & Environmental Science 2014, 7, 2359-2365.
67. Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J., Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering Behind Device Processing for High Efficiency. Journal of the American Chemical Society 2015, 137, 4460-4468.
68. Zhang, W., et al., Ultrasmooth Organic–Inorganic Perovskite Thin-Film Formation and Crystallization for Efficient Planar Heterojunction Solar Cells. Nature Communications 2015, 6.
69. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie 2014, 126, 10056-10061.
70. Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G., Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated Via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society 2015, 137, 8696-8699.
71. Liang, K.; Mitzi, D. B.; Prikas, M. T., Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique. Chemistry of Materials 1998, 10, 403-411.
72. Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L., Retarding the Crystallization of PbI2 for Highly Reproducible Planar-Structured Perovskite Solar Cells via Sequential Deposition. Energy & Environmental Science 2014, 7, 2934-2938.
73. Yang, L.; Wang, J.; Leung, W. W.-F., Lead Iodide Thin Film Crystallization Control for High-Performance and Stable Solution-Processed Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7, 14614-14619.
74. Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J., Abnormal Crystal Growth in CH3NH3PbI3-XClx Using a Multi-Cycle Solution Coating Process. Energy & Environmental Science 2015, 8, 2464-2470.
75. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136, 622-625.
76. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I., Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nature Materials 2014, 13, 897-903.
77. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136, 622-5.
78. Seo, J.; Park, S.; Chan Kim, Y.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I., Benefits of Very Thin PCBM and LiF Layers for Solution-Processed p–i–n Perovskite Solar Cells. Energy & Environmental Science 2014, 7, 2642.
79. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie International Edition 2014, 53, 9898-903.
80. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Solar Cells. Nature Photonics 2014, 8, 489-494.
81. Li, W.; Fan, J.; Li, J.; Mai, Y.; Wang, L., Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society 2015, 137, 10399-405.
82. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234.
83. Ke, W., et al., Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137, 6730-3.
84. Zhang, T.; Yang, M.; Zhao, Y.; Zhu, K., Controllable Sequential Deposition of Planar CH3NH3PbI3 Perovskite Films via Adjustable Volume Expansion. Nano Letters 2015, 15, 3959-63.
85. Xu, J., et al., Perovskite-Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications 2015, 6, 7081.
86. You, J., et al., Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers. Nature Nanotechnology 2016, 11, 75-81.
87. Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A., Facile Synthesized Organic Hole Transporting Material for Perovskite Solar Cell with Efficiency of 19.8%. Nano Energy 2016, 23, 138-144.
88. Tsai, H., et al., High-Efficiency Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. Nature 2016, 536, 312-316.
89. Saliba, M., et al., Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy & Environmental Science 2016, 9, 1989-1997.
90. Chen, B.; Yang, M.; Priya, S.; Zhu, K., Origin of J–V Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7, 905-917.
91. Christians, J. A.; Manser, J. S.; Kamat, P. V., Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. The Journal of Physical Chemistry Letters 2015, 6, 852-857.
92. Wei, J.; Zhao, Y.; Li, H.; Li, G.; Pan, J.; Xu, D.; Zhao, Q.; Yu, D., Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5, 3937-3945.
93. Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumuller, T.; Christoforo, M. G.; McGehee, M. D., Hysteresis and Transient Behavior in Current-Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. Energy & Environmental Science 2014, 7, 3690-3698.
94. Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J., Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells. Nature Communications 2014, 5.
95. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, High Yield Perovskite Photovoltaic Devices Grown by Interdiffusion of Solution-Processed Precursor Stacking Layers. Energy & Environmental Science 2014, 7, 2619-2623.
96. Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J.-W.; Park, N.-G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J., Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. The Journal of Physical Chemistry Letters 2014, 5, 2357-2363.
97. Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W., Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5, 1511-1515.
98. Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F., Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy & Environmental Science 2015, 8, 2118-2127.
99. Yuan, Y.; Chae, J.; Shao, Y.; Wang, Q.; Xiao, Z.; Centrone, A.; Huang, J., Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials 2015, 5, 1500615
100. Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I., Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13, 1764-1769.
101. Niu, G.; Guo, X.; Wang, L., Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. Journal of Materials Chemistry A 2015, 3, 8970-8980.
102. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials 2014, 26, 6160-6164.
103. Atsushi, S.; Tomoyasu, K.; Tatsuru, T.; Takeo, O., Effects of Hole-Transporting Layers of Perovskite-Based Solar Cells. Japanese Journal of Applied Physics 2016, 55, 02BF01.
104. Cappel, U. B.; Daeneke, T.; Bach, U., Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano Letters 2012, 12, 4925-4931.
105. Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V., Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Applied Materials & Interfaces 2015, 7, 11107-11116.
106. J?rgensen, M.; Norrman, K.; Krebs, F. C., Stability/Degradation of Polymer Solar Cells. Solar Energy Materials and Solar Cells 2008, 92, 686-714.
107. Eliasson, B.; Kogelschatz, U., Nonequilibrium Volume Plasma Chemical Processing. IEEE Transactions on Plasma Science 1991, 19, 1063-1077.
108. 徐逸明; 游閔盛; 郭有斌; 黃傑; 洪昭南 常壓電漿原理、技術與應用. http://www.creating-nanotech.com/big5/download/20110520145713437.pdf. [Accessed: 25 Jun. 2016]
109. Paschen, F., Ueber Die Zum Funkenübergang in Luft, Wasserstoff Und Kohlensäure Bei Verschiedenen Drucken Erforderliche Potentialdifferenz. Annalen der Physik 1889, 273, 69-96.
110. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Jaeyoung, P.; Selwyn, G. S.; Hicks, R. F., The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. IEEE Transactions on Plasma Science 1998, 26, 1685-1694.
111. Fauchais, P.; Vardelle, A., Thermal Plasmas. IEEE Transactions on Plasma Science 1997, 25, 1258-1280.
112. Smith, R. W.; Wei, D.; Apelian, D., Thermal Plasma Materials Processing—Applications and Opportunities. Plasma Chemistry and Plasma Processing 1989, 9, 135S-165S.
113. Goldman, M.; Sigmond, R. S., Corona and Insulation. IEEE Transactions on Electrical Insulation 1982, EI-17, 90-105.
114. Kogelschatz, U., Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chemistry and Plasma Processing 2003, 23, 1-46.
115. Yuji, T.; Sung, Y. M., Surface Treatment of Tio2 Films by Pulse Plasma for Dye-Sensitized Solar Cells Application. IEEE Transactions on Plasma Science 2007, 35, 1010-1013.
116. Shungo, Z.; Yoshiyuki, T.; Ryo, O.; Tetsuji, O., Development of Low-Temperature Sintering Technique for Dye-Sensitized Solar Cells Combined with Dielectric Barrier Discharge Treatment. Japanese Journal of Applied Physics 2012, 51, 056201.
117. Chang, H.; Yang, Y.-J.; Li, H.-C.; Hsu, C.-C.; Cheng, I. C.; Chen, J.-Z., Preparation of Nanoporous TiO2 Films for DSSC Application by a Rapid Atmospheric Pressure Plasma Jet Sintering Process. Journal of Power Sources 2013, 234, 16-22.
118. Chang, H.; Hsu, C.-M.; Kao, P.-K.; Yang, Y.-J.; Hsu, C.-C.; Cheng, I. C.; Chen, J.-Z., Dye-Sensitized Solar Cells with Nanoporous TiO2 Photoanodes Sintered by N2 and Air Atmospheric Pressure Plasma Jets with/without Air-Quenching. Journal of Power Sources 2014, 251, 215-221.
119. Ameen, S.; Akhtar, M. S.; Seo, H.-K.; Nazeeruddin, M. K.; Shin, H.-S., An Insight into Atmospheric Plasma Jet Modified ZnO Quantum Dots Thin Film for Flexible Perovskite Solar Cell: Optoelectronic Transient and Charge Trapping Studies. The Journal of Physical Chemistry C 2015, 119, 10379-10390.
120. Wang, C.-C.; Ying, J. Y., Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chemistry of Materials 1999, 11, 3113-3120.
121. Heo, J. H., et al., Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors. Nature Photonics 2013, 7, 486-491.
122. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of Light to Electricity by cis-X2Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes. Journal of the American Chemical Society 1993, 115, 6382-6390.
123. Krüger, J.; Plass, R.; Cevey, L.; Piccirelli, M.; Grätzel, M.; Bach, U., High Efficiency Solid-State Photovoltaic Device Due to Inhibition of Interface Charge Recombination. Applied Physics Letters 2001, 79, 2085-2087.
124. Abate, A., et al., Lithium Salts as 'Redox Active' p-Type Dopants for Organic Semiconductors and Their Impact in Solid-State Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics 2013, 15, 2572-2579.
125. Wang, S.; Yuan, W.; Meng, Y. S., Spectrum-Dependent Spiro-OMTAD Oxidization Mechanism in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7, 24791-24798.
126. http://www.sigmaaldrich.com/content/dam/sigmaaldrich/structure0/137/mfcd1202 2511.eps/_jcr_content/renditions/mfcd12022511-medium.png [Accessed: 25 Jun. 2016]
127. http://www.ece.utep.edu/research/cdte/Fabrication/therm-evap.gif [Accessed: 25 Jun. 2016]
128. http://www.dileepnanotech.com/articles/SEM_schematic%20diagram.png [Accessed: 25 Jun. 2016]
129. http://www.qilerongrong.org/pic/AFM_principle.png [Accessed: 25 Jun. 2016]
130. http://physwiki.ucdavis.edu/@api/deki/files/1601/Figure4.png?size=bestfit&width =359&height=243&revision=1. [Accessed: 25 Jun. 2016]
131. https://upload.wikimedia.org/wikipedia/commons/f/f6/Spectrometer_schematic.gif [Accessed: 25 Jun. 2016]
132. https://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/System2.gif/350px-System2.gif. [Accessed: 25 Jun. 2016]
133. http://www.met.reading.ac.uk/pplato2/h-flap/phys7_1f_2.png [Accessed: 25 Jun. 2016]
134. Krol, A., et al., Investigation of Interfacial Roughness of Inxga1−Xas Epitaxial Layers on Gaas and Inp Substrates by Soft X‐Ray Reflectivity. Journal of Applied Physics 1991, 69, 949-953.
135. http://www.omacom.co.kr/download/Solar/solar%20configuration.jpg [Accessed: 25 Jun. 2016]
136. http://www.eternalsun.com/wp-content/uploads/2012/10/AM1.5.png [Accessed: 25 Jun. 2016]
137. Zhang, H.; Cheng, J.; Lin, F.; He, H.; Mao, J.; Wong, K. S.; Jen, A. K. Y.; Choy, W. C. H., Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano 2016, 10, 1503-1511.
138. Bag, M.; Renna, L. A.; Adhikari, R. Y.; Karak, S.; Liu, F.; Lahti, P. M.; Russell, T. P.; Tuominen, M. T.; Venkataraman, D., Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. Journal of the American Chemical Society 2015, 137, 13130-13137.
139. Mahan, J. E.; Barnes, D. L., Depletion Layer Effects in the Open-Circuit- Voltage-Decay Lifetime Measurement. Solid-State Electronics 1981, 24, 989-994.
140. Jain, S. C., Theory of Photo Induced Open Circuit Voltage Decay in a Solar Cell. Solid-State Electronics 1981, 24, 179-183.
141. Zaban, A.; Greenshtein, M.; Bisquert, J., Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements. ChemPhysChem 2003, 4, 859-864.
142. Pockett, A.; Eperon, G. E.; Peltola, T.; Snaith, H. J.; Walker, A.; Peter, L. M.; Cameron, P. J., Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy. The Journal of Physical Chemistry C 2015, 119, 3456-3465.
143. Pearse, R. W. B.; Gaydon, A. G., The Identification of Molecular Spectra; Springer Netherlands, 1976, pp 217-235.
144. López, R.; Gómez, R., Band-Gap Energy Estimation from Diffuse Reflectance Measurements on Sol–Gel and Commercial TiO2: A Comparative Study. Journal of Sol-Gel Science and Technology 2012, 61, 1-7.
145. 張浩銘. 噴射大氣電漿快速製程染料敏化太陽能電池. 國立臺灣大學, 2013.
146. Yang, D.; Yang, R.; Zhang, J.; Yang, Z.; Liu, S.; Li, C., High Efficiency Flexible Perovskite Solar Cells Using Superior Low Temperature TiO2. Energy & Environmental Science 2015, 8, 3208-3214.
147. Kim, I. S.; Haasch, R. T.; Cao, D. H.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G.; Martinson, A. B. F., Amorphous TiO2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. ACS Applied Materials & Interfaces 2016, 8, 24310-24314.
148. Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yang, S., All-Solid-State Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays. Nanoscale 2013, 5, 3245-3248.
149. Yun, S.; Lund, P. D.; Hinsch, A., Stability Assessment of Alternative Platinum Free Counter Electrodes for Dye-Sensitized Solar Cells. Energy & Environmental Science 2015, 8, 3495-3514.
150. Juarez-Perez, E. J.; Wuβler, M.; Fabregat-Santiago, F.; Lakus-Wollny, K.; Mankel, E.; Mayer, T.; Jaegermann, W.; Mora-Sero, I., Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5, 680-685.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59624-
dc.description.abstract本論文研究以噴射式大氣電漿製程處理二氧化鈦薄膜之性質並應用於鈣鈦礦太陽能電池中。二氧化鈦以異丙醇鈦(titanium isopropoxide)為前驅物,以溶膠凝膠法製備;並採旋轉塗佈方式沉積30 nm薄膜,再以氮氣大氣電漿處理之。在1分鐘內,氮氣大氣電漿可快速地去除溶劑並轉換膠體粒子形成非晶二氧化鈦,得到平整且緻密二氧化鈦薄膜;分析電漿放射光譜,可知是藉電漿中N2 1st與2nd positive幫助快速反應所致。透過XRD分析,我們發現經電漿處理所得二氧化鈦屬非晶結構,與高溫退火之銳鈦礦晶相不同。將以氮氣為33 slm,處理時間為40秒之二氧化鈦做電子傳輸層,以一步驟溶液方式旋塗MAPbI3鈣鈦礦(lead methylammonium tri-iodide perovskite),所製作之太陽能電池具有最佳光電轉換效率14.3%;可以與高溫退火30分鐘二氧化鈦所製作之元件,轉換效率為13.2%相比擬。我們成功採用構造簡單且製程時間快速之大氣電漿裝置製作有效之鈣鈦礦太陽能電池,具應用潛力。zh_TW
dc.description.abstractIn this thesis, we study the characteristics of atmospheric plasma jet (APPJ) treated titanium dioxide thin film and its applications in perovskite solar cells. Titanium dioxide is prepared by sol-gel method, with titanium isopropoxide as precursor. A 30-nm-thick titanium dioxide (TiO2) precursor thin film is spin coated on a fluorine doped tin oxide substrate, followed by APPJ treatment. In less than one minute, the nitrogen APPJ efficiently removes solvents and convert the gels into amorphous titanium dioxide, and the acquired film is flat and compact, the rapid conversion can be attributed to the highly reactive 1st and 2nd positive of N2 in the plasma. The X-ray diffraction (XRD) pattern implies that the plasma treated TiO2 is amorphous phase, while the furnace annealed one is anatase phase. We further apply the plasma treated TiO2 to MAPbI3 perovskite solar cell as the electron transport layer. By one step solution method, we obtain perovskite solar cell with best energy transfer efficiency of 14.3%, which is similar to solar cells with 30 min annealed titanium dioxide, at 13.2%. The result suggests that ultra-short APPJ-treated TiO2 is promising for perovskite solar cell applications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:30:27Z (GMT). No. of bitstreams: 1
ntu-106-R03941058-1.pdf: 4805479 bytes, checksum: b4381ac2ce90c70a5707533820673c4b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 前言 1
1.2 研究動機 5
第2章 文獻回顧 6
2.1 太陽能電池 6
2.1.1 太陽能電池特性參數 7
2.2 鈣鈦礦太陽能電池 10
2.2.1 中孔性結構 12
2.2.2 平面結構 13
2.2.3 一步驟製程 17
2.2.4 二步驟製程 18
2.2.5 蒸鍍製程 19
2.2.6 磁滯 22
2.2.7 穩定性 23
2.3 電漿 26
2.3.1 電漿簡介 26
2.3.2 氣體崩潰電壓 28
2.3.3 常壓與低壓電漿 29
2.3.4 常壓電漿系統 31
2.3.5 常壓大氣電漿快速處理應用於太陽能電池 32
第3章 研究方法 35
3.1 實驗流程 35
3.1.1 基板清洗 37
3.1.2 二氧化鈦前驅溶液調配 38
3.1.3 二氧化鈦緻密層塗佈 39
3.1.4 二氧化鈦緻密層處理 39
3.1.5 鈣鈦礦調配與塗佈 40
3.1.6 電洞傳輸層調配與塗佈 40
3.1.7 銀電極沈積 42
3.2 製程儀器 43
3.2.1 氮氣手套箱 43
3.2.2 旋轉塗佈系統 44
3.2.3 熱蒸鍍機 44
3.3 量測分析 46
3.3.1 掃描式電子顯微鏡 46
3.3.2 原子力顯微鏡 47
3.3.3 紫外光-可見光光譜儀 49
3.3.4 X光子能譜儀 50
3.3.5 X光子繞射儀 51
3.3.6 太陽光模擬系統 52
3.3.7 電化學阻抗分析 53
3.3.8 開路電壓衰減 56
第4章 實驗結果與討論 57
4.1 電漿分析 57
4.1.1 工作溫度 57
4.1.2 放射光譜 58
4.2 薄膜分析 61
4.2.1 二氧化鈦掃描式電子顯微鏡分析 61
4.2.2 二氧化鈦原子力顯微鏡分析 63
4.2.3 二氧化鈦光學性質 64
4.2.4 二氧化鈦X光子能譜分析 66
4.2.5 二氧化鈦與鈣鈦礦X光繞射分析 71
4.3 太陽能電池特性 74
4.3.1 電性分析 74
4.3.2 電化學阻抗分析 85
第5章 結論與未來展望 88
附錄A:以側孔為7 mm之石英管下之大氣電漿對鈣鈦礦太陽能電池之研究 90
附錄B:元件效率統計資料 100
參考文獻 108
dc.language.isozh-TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject鈣鈦礦太陽能電池zh_TW
dc.subject二氧化鈦zh_TW
dc.subject噴射式大氣電漿zh_TW
dc.subject噴射式大氣電漿zh_TW
dc.subject二氧化鈦zh_TW
dc.subjectTiO2en
dc.subjectTiO2en
dc.subjectperovskite solar cellen
dc.subjectatmospheric pressure plasma jeten
dc.subjectatmospheric pressure plasma jeten
dc.subjectperovskite solar cellen
dc.title噴射式大氣電漿處理之二氧化鈦於鈣鈦礦太陽能電池之應用zh_TW
dc.titleAtmospheric Pressure Plasma Jet Processed Titanium Dioxide for Perovskite Solar Cell Applicationen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建彰,吳志毅
dc.subject.keyword噴射式大氣電漿,二氧化鈦,鈣鈦礦太陽能電池,zh_TW
dc.subject.keywordatmospheric pressure plasma jet,TiO2,perovskite solar cell,en
dc.relation.page120
dc.identifier.doi10.6342/NTU201700643
dc.rights.note有償授權
dc.date.accepted2017-02-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved