Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorHsiang-Cheng Wangen
dc.contributor.author王翔正zh_TW
dc.date.accessioned2021-06-16T09:29:14Z-
dc.date.available2017-06-12
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-03-27
dc.identifier.citation[1] Chapin, D.M., C.S. Fuller, and G.L. Pearson, Journal of Applied Physics, 1954.25(5): p.676
[2] Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer-fullerene bulkheterojunction
solar cells. Adv. Mater. 21, 1323–1338
[3] Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells.Nature Photonics,6(3), 153-161.
[4] Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells — enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).
[5] Tang, C.W 2-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183-185
[6] https://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/diode-equivalent-circuit-models/
[7] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens,
“Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells”, Journal of Applied Physics, 94,6849(2003)
[8] https://sharepoint.uvm.edu/sites/physx202/Wiki%20Pages/I-V%20curves%20and%20how%20to%20make%20the%20fitting%20work.aspx
[9] National Instruments, “Part II - Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code”, 2012.
[10] Hertz, H. “Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung” Annalen der Physik 267, 938-1000 (1887)
[11] Einstein, A. “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt” Annalen der Physik 322, 132-148 (1905)
[12]A. L. Roest, J. J. Kelly, D. Vanmaekelbergh, E. A. Meulenkamp, Phys. Rev. Lett. 89, 036801.
[13] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 2009, 21, 4087–4108
[14] B. S. Ong, C. S. Li, Y. N. Li, Y. L. Wu, and R. Loutfy, J. Am. Chem. Soc.129, 2750 (2007).
[15] W. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, and R. A. J. Janssen, J. Phys. Chem. B 109, 9505 (2005).
[16] Steven K. Hau, Hin-Lap Yip, Nam Seob Baek, Jingyu Zou, Kevin O’Malley, and Alex K.-Y. Jen, Applied Physics Letters 92, 253301 (2008)
[17] http://www.sigmaaldrich.com/catalog/product/aldrich/423475?lang=en®ion=TW
[18] https://en.wikipedia.org/wiki/PEDOT:PSS
[19] Yanming Sun , Jung Hwa Seo , Christopher J. Takacs , Jason Seifter , and Alan J. Heeger. Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679 – 1683
[20] James Bullock, Di Yan, Andres Cuevas, Yimao Wan and Christian Samundsett.
n- and p-type silicon solar cells with molybdenum oxide hole contacts. Energy Procedia 77 ( 2015 ) 446 – 450
[21] Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, Adv. Mater. 2010, 22, E135.
[22] L.-M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434.
[23] Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).
[24] Zhao, G. J., He, Y. J. & Li, Y. F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization. Adv. Mater. 22, 4355–4358 (2010).
[25] Yang Yang, Gang Li, “Progress in High-Efficient Solution Process Organic Photovoltaic Devices” (2015)
[26] M. Suezaki and M. Yokoyama. M. Hiramoto, “Effect of Thin Gold Interstitial-Layer on the Photovoltaic Properties of Tandem Organic Solar Cell.” Chemistry Letter 327 (1990)
[27] A. Yakimov and S. R. Forrest, “High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters” Applied Physics Letters 80 (9), 1667 (2002)
[28] Yongsheng Liu, Chun-Chao Chen, Ziruo Hong, Jing Gao, Yang (Michael) Yang, Huanping Zhou, Letian Dou, Gang Li & Yang Yang, “Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency” Scientific Reports 3, Article number: 3356 (2013)
[29] Gilles Dennler, Hans-Jürgen Prall, Robert Koeppe, Martin Egginger, Robert Autengruber, and Niyazi Serdar Sariciftci, “Enhanced spectral coverage in tandem organic solar cells” Applied Physics Letters 89 (9), 1667 (2002)
[30] A. G. F. Janssen, T. Riedl, S. Hamwi, H. H. Johannes, and W. Kowalsky, “Highly Efficient Organic Tandem Solar Cells Using an Improved Connecting Architecture.” Applied Physics Letters 91 (7), 073519 (2007).
[31] V. Shorotriya, E.H.-E. Wu, G. Li, Y. Yao, Y. Yang, “Efficient light harvesting in multiple-device stacked structure for polymer solar cells ” Apply Physics Letter 88, 064104 (2006)
[32] Huiqiong Zhou , Yuan Zhang , Cheng-Kang Mai , Samuel D. Collins , Guillermo C. Bazan , Thuc-Quyen Nguyen , and Alan J. Heeger, “Polymer Homo-Tandem Solar Cells with Best Efficiency of 11.3%” Adv. Mater. 2015, 27, 1767-1773
[33] A. Hadipour, B. de Boer, J. Wildeman, F. Kooistra, J.C. Hummelen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, P.W.M. Blom, “Solution-Processed Organic Tandem Solar Cells” Adv. Funct. Mater. 2006, 16 (1897)
[34] J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger. “Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing” Adv. Mater. 18, 572 (2006)
[35] Jingbi You1, Letian Dou1, Ken Yoshimura, Takehito Kato, Kenichiro Ohya, Tom Moriarty, Keith Emery, Chun-Chao Chen, Jing Gao, Gang Li1 & Yang Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency” Nat. Commun. 4, 1446 (2013)
[36] Tayebeh Ameri, Ning Li and Christoph J. Brabec, “Highly efficient organic tandem solar cells: a follow up review”, Energy Environ. Sci., 2013, 6, 2390-2413
[37] J.H. Hou, H.Y. Chen, S.Q. Zhang, G. Li, Y. Yang, J. Am. Chem. Soc. 130, 16144 (2008)
[38] L.T. Dou, J.B. You, J. Yang, C.-C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G. Li,Y. Yang, Nat. Photon. 6, 180 (2012)
[39] Jun Yang , Rui Zhu, Ziruo Hong, Youjun He, Ankit Kumar, Yongfang Li & Yang Yang, “A Robust Inter-Connecting Layer for Achieving High Performance Tandem Polymer Solar Cells” Adv. Mater. 2011
[40] Elvira Fortunato, David Ginley, Hideo Hosono and David C. Paine, 'Transparent Conducting Oxides for Photovoltaics'. MRS Bulletin 32: 242–247.
[41] http://www.nanocarbon.cz/research.html
[42] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, “Electric field effect in automatically thin carbon film” Science, vol. 306, pp.666-669. Oct 22 2004.
[43] K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab & K. Kim, “A roadmap for graphene” Nature, vol. 490, pp. 192-200, Oct 11 2012
[44] J. S. Moon, D. Curtis, M. Hu, D. Wong, et al., “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates” IEEE Electron Device Letters, vol. 30, pp3 650-652, Jun 2009.
[45] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils” Science, Vol. 324, Issue 5932, pp. 1312-1314, Jun 5 2009
[46] Xuan Wang, Linjie Zhi, and Klaus Müllen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells” Nano Lett. 2008, 8(1), pp323-327
[47] Hyesung Park, Sehoon Chang, Xiang Zhou, Jing Kong, Tomás Palacios, and Silvija Gradečak, “Flexible Graphene Electrode-Based Organic Photovoltaics with Record-High Efficiency” Nano Lett. 2014, 14, 5148-5154
[48] Ji Won Suk, Alexander Kitt, Carl W. Magnuson, Yufeng Hao, Samir Ahmed, Jinho An, Anna K. Swan, Bennett B. Goldberg, and Rodney S. Ruoff, “Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates” Acs Nano, vol. 5, pp. 6916-6924, Sep 2011
[49] Wei-Hsiang Lin, Ting-Hui Chen, Jan-Kai Chang, Jieh-I Taur, Yuan-Yen Lo, Wei-Li Lee, Chia-Seng Chang, Wei-Bin Su, and Chih-I Wu, “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate” Acs Nano, vol.8, pp.1784-1791, Feb 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59593-
dc.description.abstract本論文研究一些界面改質的方法,利用這些改質方法,堆疊式有機太陽能電池與石墨烯陰極太陽能電池得以以濕式製程製作出來,並探討元件最佳化過程與界面改質前後的性質變化。
本論文第一部分先討論主動層材料選擇,將其製作成單層太陽能電池並最佳化,接著討論堆疊式太陽能電池的中間連接層性質與適合的材料,為了讓中間連接層可以以濕式旋轉圖佈方式成膜,紫外光表面處理(UV-Ozone)與氧電漿表面處理(O2 plasma)被應用在主動層表面,改善其疏水的性質。堆疊式太陽能電池的主動層厚度設計過以得到相匹配電流,原件成功做出並達到5.129%的效率。被紫外光臭氧與氧電漿處理過的主動層表面進一步以儀器量測表面性質的變化,並且找到為何以紫外光表面處理的元件會表現不好的原因。
本論文第二部分研究以石墨烯當做陰極的倒置型單層太陽能電池,為了改善石磨烯表面疏水的性質,一種親疏水介面材料HBC-6ImBr被用來改變石墨烯表面性質,借由連續堆疊三層石墨烯,以PTB7:PC71BM為主動層的石墨烯陰極太陽能電池達到3.515%的效率。
zh_TW
dc.description.abstractIn this thesis, several ways of surface modification are investigated. Tandem polymer solar cells and single junction solar cells with graphene as cathode are successfully fabricated via surface modification. The performance of solar cells and the property change after surface modification are carefully studied.
In the first topic, we discuss the candidate materials for tandem solar cell. Single junction solar cells are optimized based on our front cell and rear cell material. Interconnection layer is then discussed. In order to let interconnection layer be coated on active layer, two commonly-used surface modification methods, UV-Ozone and O2 plasma, are introduced. Tandem solar cells are carefully designed and put into experiment. Devices are successfully fabricated with PCE of 5.129%. The surface properties of polymer film after UV-Ozone and O2 plasma pretreatment are further investigated. The reasons for poor performance of UV-Ozone-modified devices are found
In the second topic, a single junction solar cell based on graphene cathode is fabricated. Hydrophobicity of graphene is improved with the aid of HBC-6ImBr. Three layers of graphene are transferred on glass substrate as cathode, and PCE of 3.515% is achieved based on PTB7:PC71BM.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:29:14Z (GMT). No. of bitstreams: 1
ntu-106-R03941052-1.pdf: 2847022 bytes, checksum: d3a0214d9a4df16c19c5913472f1d439 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Polymer Solar Cell 2
1.2.1 Background 2
1.2.2 Principle 4
1.2.3 Operation Mechanism 5
Chapter 2 Experimental Setup and Materials 8
2.1 Experimental Equipment 8
2.1.1 Glove Box 8
2.1.2 Solar Simulator 9
2.1.3 Ultraviolet and X-ray Photoelectron Spectroscopy 9
2.1.4 External Quantum Efficiency 10
2.2 Materials 11
2.2.1 Substrate 11
2.2.2 Electron Transport Layer 11
2.2.3 Hole Transport Layer 13
2.2.4 Active Layer 14
2.3 Device Fabrication 18
2.3.1 Solution Preparation 18
2.3.2 Fabrication of Solar Cell 19
Chapter 3 Tandem Solar Cell 21
3.1 Introduction 21
3.1.1 Motivation 21
3.1.2 Overview 21
3.1.3 Principle of tandem solar cell 24
3.2 Active layer 25
3.2.1 Active layer materials 25
3.2.2 Optimization of single junction solar cells 26
3.3 Interconnection layer 30
3.3.1 Material selection 30
3.3.2 Surface modification 33
3.4 Tandem solar cells 34
3.4.1 Tandem solar cells design 34
3.4.2 Using UV-Ozone to modify the surface property 35
3.4.3 Using O2 plasma to modify the surface property 38
3.5 Investigating two different surface modification methods 43
3.5.1 Single junction solar cell with different treatment on P3HT:ICBA 43
3.5.2 Absorption and EQE measurement 45
3.5.3 XPS and UPS measurement 47
3.5.4 UV light time test 49
3.6 Conclusion 50
Chapter 4 Use Graphene as Electrode in Solar Cell 51
4.1 Introduction 51
4.1.1 Motivation 51
4.1.2 Overview 52
4.2 Graphene solar cell 53
4.2.1 Graphene transfer 53
4.2.2 Inverted solar cell with graphene cathode 54
4.3 Conclusion 57
Chapter 5 Conclusion and Future Work 58
5.1 Conclusion 58
5.2 Future Work 59
REFERENCE 60
dc.language.isoen
dc.title堆疊式有機太陽能電池與石墨烯陰極太陽能電池之研究zh_TW
dc.titleInvestigation of Tandem Polymer Solar Cell and Graphene Cathode Inverted Solar Cellen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳美杏,吳育任,陳奕君,吳肇欣
dc.subject.keyword聚合物有機太陽能電池,界面改質,堆疊式太陽能電池,石墨烯陰極,zh_TW
dc.subject.keywordPolymer solar cell,surface modification,tandem solar cell,graphene cathode,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201700682
dc.rights.note有償授權
dc.date.accepted2017-03-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved