Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59558
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorLissette Gioconda Valladares-Rendónen
dc.contributor.author方亞妲zh_TW
dc.date.accessioned2021-06-16T09:27:53Z-
dc.date.available2017-06-12
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-05-04
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59558-
dc.description.abstract缺乏精心設計建築物的都市模式增加城市熱量和能源需求。太陽能控制技術的策略,如果正確地設計和應用,可降低太陽輻射及冷卻需求。本研究旨在設立並推薦兼具最有效性及平衡性,可減緩城市熱島效應並提升建築物能源效率的被動解決方案。精心設計的建築物將有助於降低的室外溫度、日照時數、太陽輻射強度與室內冷卻之需求,而增加陰影範圍和節能。本研究回顧了三類主要的微氣候控制類別:都市景觀佈局,街道峽谷佈局與天空视域因子。進行了一個基準案例及七個有懸垂裝置系統的模擬。檢查了四類主要的太陽能控制類別:自己的陰影門面、日光遮陽裝置,窗戶到牆面比例與建築方向。微氣候控制的結果顯示,都市景觀布局下的遮蓋草地案例可有效的將地表及空氣溫低分別降低達52.51%及50%。日光遮陽裝置模案裂果顯示傳統懸垂裝置系統可將都市日照時數降低66%。另一方面,多重懸垂裝置系統的組合在對於阻擋尖峰時段的總太陽輻射最為有效,可降低建築室外太陽輻射強度達76.8%,並增加21.5%的陰影範圍,導致節能潛力高達8.92%。在被動式案例的太陽能控制中,從太陽輻射強度、日照及能見度的最有效及平衡解決方案的角度是複雜設計的自己的陰影門面和日光遮陽裝置,節能潛力可達66%。被動式策略的戰略放置和準確設計可以進一步提升戶外及室內的成效。對建立最適建築門面為了戰略放置的複雜及簡單設計與形狀而言,最佳建築方向是關鍵。計算了出59個位置的方位角度提供全球範圍的指南。結果顯示若要達到防止太陽輻射,58.62%的地點應於其東方設置複雜設計,24.13%於其東北方,12.06%於其西方及5.17%於其東南方。在熱帶及亞熱帶地區,複雜設計可與再生能源技術相結合。zh_TW
dc.description.abstractUrban patterns without highly designed buildings increase urban heat and energy demands. Solar control techniques encompass strategies that – if properly designed and applied – can decrease solar radiation and cooling demands. This research aims to establish and recommend the most effective and balanced passive solutions to mitigate the effects of the urban heat island and enhance buildings’ energy efficiency. A highly designed building will contribute to a decrease in outdoor temperatures, as well as sunlight hours, insolation and indoor cooling demands, which could increase the shading range and the energy savings. Three main classes of microclimate control are reviewed – urban landscape layout, street canyon layout and sky view factor. A base case scenario and seven with overhang device systems are simulated. Four main classes of solar control are examined – façade self-shading, shading devices, window-to-wall-ratio and building orientation. The results show that within the microclimate control, the shaded grass case under urban landscape layout class effectively lowers surface and air temperatures by as much as 52.51% and 50%, respectively. The case under shading device class demonstrates that a traditional overhang device decreases the urban site’s sunlight hours by up to 66%. On the other hand, the combined overhang device systems have the highest capacity for blocking total solar radiation during peak hours, thus decreasing the insolation ratings in the buildings’ outdoor by up to 76.8% and gaining shading on the envelope of up to 21.5%, resulting in potential energy savings of up to 8.92%. Within solar control, the passive cases show that the most effective and balanced solutions in terms of insolation, daylighting and visibility are complex designs of façade self-shadings and shading devices, which achieve potential energy savings of up to 66%. The strategic placement and accurate design of passive strategies can further improve the outdoor and indoor performance. Optimal building orientation is essential for determining most favourable façades for the strategic placement of both complex and simple designs, as well as building shapes. Azimuth angles are calculated for 59 locations to provide a worldwide guide. The findings indicate that 58.62% of the locations should apply complex designs to the east, 24.13% to the northeast, 12.06% to the west and 5.17% to the southeast orientations for solar protection. In tropical and subtropical zones, complex designs can be integrated with renewable technologies.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:27:53Z (GMT). No. of bitstreams: 1
ntu-106-F98541212-1.pdf: 7940333 bytes, checksum: 238f028b517696cf92be0c02d09ed134 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable of Contents
Approval English i
Approval Chinese ii
Declaration iii
Acknowledgments iv
Abstract English v
Abstract Chinese vi
Table of Contents vii
List of Tables x
List of Figures xi
Nomenclature xiv
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 State of the art 3
1.4 Problem definition 6
1.5 Scope and limitations 6
1.6 Aim and objectives 8
1.7 Research questions 8
1.8 Research design 10
1.9 Structure of the thesis 11
Chapter 2. Literature Review 13
2.1 Introduction 13
2.2 PCS for microclimate control on an urban scale 13
2.2.1 Urban landscape layout 13
2.2.2 Street canyon layout 15
2.2.3 Sky view factor 18
2.3 PCS for solar control on a building scale 20
2.3.1 Façade self-shading 21
2.3.2 Shading devices 23
2.3.3 Window-to-wall-ratio 28
2.3.4 Building orientation 30
Chapter 3. Methodology 35
3.1 Introduction 35
3.2 Research methodology 35
3.3 Research method case I: SDs at urban and building scales 36
3.3.1 Environment modelling 36
3.3.1.1 Climate classification 37
3.3.1.2 Geographic location 38
3.3.2 Case background 38
3.3.2.1 Masterplan design 39
3.3.2.2 Building selection 40
3.3.3 Computer modelling 40
3.3.3.1 Base case design 40
3.3.3.1.1 Building modelling 41
3.3.3.1.2 Urban modelling 42
3.3.3.2 WEA for sustainable design 43
3.3.3.2.1 Sun path for local weather 43
3.3.3.3 Passive case designs 44
3.3.3.3.1 Solar and shading projections on site 45
3.3.3.3.2 Solar and shading projections on building 46
3.3.3.3.3 Selected floors for simulations 47
3.3.3.3.4 Design of OD systems for comparisons 47
3.3.3.4 Boundary conditions 48
3.3.3.4.1 Materials 48
3.3.3.4.2 Thermal zones 49
3.3.3.5 Grid design 50
3.3.3.5.1 2D grid design on an urban scale 50
3.3.3.5.2 3D grid design on a building scale 51
3.3.4 Numerical simulations 51
3.3.4.1 Outdoor simulations 52
3.3.4.1.1 Sunlight analysis 52
3.3.4.1.2 Insolation analysis 52
3.3.4.2 Indoor simulations 52
3.3.4.2.1 Absorbed- transmitted analysis 52
3.3.4.2.2 Thermal analysis 53
3.3.4.3 Envelope simulations 53
3.3.4.3.1 Solar exposure analysis 53
3.4 Research method case II: OBO an indicator for planning at urban and building scale 54
3.4.1 Numerical simulations 54
3.4.1.1 WEA for optimum orientation 54
3.4.1.1.1 Stereographic diagram analysis 55
3.4.2 Classification of orientations 56
Chapter 4. Results and Discussion 57
4.1 Introduction 57
4.2 PCS for microclimate control on an urban scale 57
4.2.1 Outdoor temperatures 58
4.2.1.1 Surface and air temperature reductions 58
4.2.1.2 Potential temperature reductions 59
4.3 SDs on urban and building scales 60
4.3.1 Outdoor insolation 60
4.3.1.1 Sunlight reductions 60
4.3.1.2 Insolation reductions 61
4.3.2 Envelope shadowed 64
4.3.2.1 Shade gained 64
4.3.3 Indoor energy 65
4.3.3.1 Cooling load reductions 65
4.3.3.2 Potential energy savings 67
4.4 PCS for solar control on a building scale 67
4.4.1 Indoor energy 69
4.4.1.1 Energy demand reductions 69
4.4.1.2 Potential energy savings 69
4.4.2 Design response 69
4.4.2.1 Suitability 69
4.4.2.2 Effectiveness 70
4.4.2.3 Variables 72
4.4.2.4 Recommendations of effective and balanced solutions 74
4.5 OBO for the strategic placement of designs and set up building shapes 75
4.5.1 Optimizing designs 75
4.5.1.1 Azimuth angles for OBOSP and OBOSC in Asian climates 75
4.5.1.2 Worldwide guide of azimuth angles for OBOSP and OBOSC 76
4.5.1.3 Worldwide guide of ideal orientations for OBOSP and OBOSC 78
4.5.1.4 Recommendations for maximizing the PES 81
Chapter 5. Conclusions 82
References 85
dc.language.isoen
dc.title優化被動式策略對於可持續城市規劃和建築設計
為了降低都市熱島並增加建築能源效率
zh_TW
dc.titleOptimisation of passive strategies for
sustainable urban plans and building designs to decrease urban heat island and increase building’s energy-efficiency
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee李慧梅(Whei-May Lee),闕蓓德(Pei-Te Chiueh),林鎮洋(Jen-Yang Lin),蔡欣君(Shin-Jyun Tsaih)
dc.subject.keyword城市熱島,能源需求,可持續城市,被動式策略,微氣候控制,太陽能控制,節能潛力,最佳方位角度,zh_TW
dc.subject.keywordUrban heat island,Energy demands,Sustainable cities,Passive strategies,Microclimate control,Solar control,Potential energy savings,Optimal azimuth angles,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201700792
dc.rights.note有償授權
dc.date.accepted2017-05-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
7.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved