請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
| dc.contributor.author | Bo-Yuan Chen | en |
| dc.contributor.author | 陳博淵 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:27:10Z | - |
| dc.date.available | 2020-08-27 | |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | 1. Aggarwal R, Grantcharov T, Moorthy K, Hance J, Darzi A. A competency-based virtual reality training curriculum for the acquisition of laparoscopic psychomotor skill. The American journal of surgery 2006;191:128-33. 2. Atherton S, Antley A, Evans N, Cernis E, Lister R, Dunn G, Slater M, Freeman D. Self-confidence and paranoia: an experimental study using an immersive virtual reality social situation. Behavioural and cognitive psychotherapy 2016;44:56-64. 3. Bastug E, Bennis M, Médard M, Debbah M. Toward interconnected virtual reality: Opportunities, challenges, and enablers. IEEE Communications Magazine 2017;55:110-7. 4. Berman S, Jewett D, Fein G, Saika G, Ashford F. Photopic luminance does not always predict perceived room brightness. Lighting research technology 1990;22:37-41. 5. Boray PF, Gifford R, Rosenblood L. Effects of warm white, cool white and full-spectrum fluorescent lighting on simple cognitive performance, mood and ratings of others. Journal of Environmental Psychology 1989;9:297-307. 6. Bouchard S, St-Jacques J, Renaud P, Wiederhold BK. Side effects of immersions in virtual reality for people suffering from anxiety disorders. JCR 2009;2:127. 7. Bowman K. The clinical assessment of colour discrimination in senile macular degeneration. Acta ophthalmologica 1980;58:337-46. 8. Bryson S. Virtual reality in scientific visualization. Communications of the ACM 1996;39:62-71. 9. Burns E, Razzaque S, Panter AT, Whitton MC, McCallus MR, Brooks FP. The hand is slower than the eye: A quantitative exploration of visual dominance over proprioception. In: IEEE Proceedings VR 2005 Virtual Reality, 2005, 2005: IEEE;3-10. 10. Cajochen C, Frey S, Anders D, Späti J, Bues M, Pross A, Mager R, Wirz-Justice A, Stefani O. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of applied physiology 2011;110:1432-8. 11. Cho C, Hwang W, Hwang S, Chung Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. The Tohoku journal of experimental medicine 2016;238:213-8. 12. Coates G. Program from Invisible Site-a virtual sho, a multimedia performance work presented by George Coates Performance Works. San Francisco, CA 1992. 13. De Luca R, Russo M, Naro A, Tomasello P, Leonardi S, Santamaria F, Desireè L, Bramanti A, Silvestri G, Bramanti P. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations. International Journal of Neuroscience 2018;128:791-6. 14. Desai PR, Desai PN, Ajmera KD, Mehta K. A review paper on oculus rift-a virtual reality headset. arXiv preprint arXiv:14081173 2014. 15. Drey T, Jansen P, Fischbach F, Frommel J, Rukzio E. Towards Progress Assessment for Adaptive Hints in Educational Virtual Reality Games. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 2020;1-9. 16. García-Valle G, Ferre M, Breñosa J, Vargas D. Evaluation of presence in virtual environments: Haptic vest and user’s haptic skills. IEEE Access 2017;6:7224-33. 17. Gerardi M, Rothbaum BO, Ressler K, Heekin M, Rizzo A. Virtual reality exposure therapy using a virtual Iraq: case report. Journal of Traumatic Stress: Official Publication of The International Society for Traumatic Stress Studies 2008;21:209-13. 18. Goulding J, Nadim W, Petridis P, Alshawi M. Construction industry offsite production: A virtual reality interactive training environment prototype. Advanced Engineering Informatics 2012;26:103-16. doi: https://doi.org/10.1016/j.aei.2011.09.004. 19. Guo J, Weng D, Zhang Z, Liu Y, Duh HBL, Wang Y. Subjective and objective evaluation of visual fatigue caused by continuous and discontinuous use of HMDs. Journal of the Society for Information Display 2019;27:108-19. 20. Han J, Bae SH, Suk HJ. Comparison of visual discomfort and visual fatigue between head-mounted display and smartphone. Electronic Imaging 2017;2017:212-7. 21. Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, Marks F, Sliney D, Hunt CE, Hirota T. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. npj Aging and Mechanisms of Disease 2017;3:1-3. 22. Hawes BK, Brunyé TT, Mahoney CR, Sullivan JM, Aall CD. Effects of four workplace lighting technologies on perception, cognition and affective state. International Journal of Industrial Ergonomics 2012;42:122-8. 23. Hill KJ, Howarth PA. Habituation to the side effects of immersion in a virtual environment. Displays 2000;21:25-30. doi: https://doi.org/10.1016/S0141-9382(00)00029-9. 24. Hubel DH, Wiesel TN. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of neurophysiology 1967;30:1561-73. 25. Ito S, Pilat A, Gerwat W, Skumatz CM, Ito M, Kiyono A, Zadlo A, Nakanishi Y, Kolbe L, Burke JM. Photoaging of human retinal pigment epithelium is accompanied by oxidative modifications of its eumelanin. Pigment cell melanoma research 2013;26:357-66. 26. Jain D, Sra M, Guo J, Marques R, Wu R, Chiu J, Schmandt C. Immersive scuba diving simulator using virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, 2016;729-39. 27. Jonikaitis D, Belopolsky AV. Target–distractor competition in the oculomotor system is spatiotopic. Journal of Neuroscience 2014;34:6687-91. 28. Kennedy RS, Drexler JM, Compton DE, Stanney KM, Lanham DS, Harm DL. Configural Scoring of Simulator Sickness, Cybersickness and Space Adaptation Syndrome: Similarities and Differences. Virtual and adaptive environments: Applications, implications, and human performance issues 2003:247. 29. Kenyon A, Rosendale Jv, Fulcomer S, Laidlaw D. The design of a retinal resolution fully immersive VR display. In: 2014 IEEE Virtual Reality (VR), 2014;89-90. 30. Kim HK, Park J, Choi Y, Choe M. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied ergonomics 2018;69:66-73. 31. Kishore TA, Beddingfield R, Holden T, Shen Y, Reihsen T, Sweet RM. Task deconstruction facilitates acquisition of transurethral resection of prostate skills on a virtual reality trainer. Journal of endourology 2009;23:665-8. 32. Kramida G. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE transactions on visualization and computer graphics 2015;22:1912-31. 33. Krueger MW. Artificial reality II. 1991. 34. Kuo, Lin, Liu. Intelligence system for evaluation the multi-dimension abilities of occupational bus driver. In: 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), 2016: IEEE;177-80. 35. Lanier J. Virtual reality: The promise of the future. Interactive Learning International 1992;8:275-79. 36. Lee Y, Jang I, Lee D. Enlarging just noticeable differences of visual-proprioceptive conflict in VR using haptic feedback. In: 2015 IEEE World Haptics Conference (WHC), 2015: IEEE;19-24. 37. Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, Khorsand D, Andros J, Hannaford B, Satava RM. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. Journal of the American College of Surgeons 2013;216:1181-92. 38. Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, Wang X, Jiang Q. Application of virtual reality technology in clinical medicine. American journal of translational research 2017;9:3867. 39. Lin, Duh, Parker DE, Abi-Rached H, Furness TA. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In: Proceedings ieee virtual reality 2002, 2002: IEEE;164-71. 40. Liu, Tseng, Peng, Chang, Chia. Association of cognitrone, visual pursuit abilities and tachistoscopic traffic responses with gender and driving experience. In: The 40th International Conference on Computers Indutrial Engineering, 2010: IEEE;1-5. 41. Luck SJ, Vogel EK. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in cognitive sciences 2013;17:391-400. 42. Market CV. Virtual Reality Retailing. 2018. 43. Marr D. Early processing of visual information. Philosophical Transactions of the Royal Society of London B, Biological Sciences 1976;275:483-519. 44. McComas J, MacKay M, Pivik J. Effectiveness of virtual reality for teaching pedestrian safety. CyberPsychology Behavior 2002;5:185-90. 45. Megaw E. Factors affecting visual inspection accuracy. Applied ergonomics 1979;10:27-32. 46. Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 2009;40:169-74. 47. Munafo J, Diedrick M, Stoffregen TA. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental brain research 2017;235:889-901. 48. Nakagawa H, Mizukoshi K, Watanabe Y, Ohashi N, Asai M. Clinical observations on elderly patients with vertigo and/or dizziness (3rd report). Equilibrium Research 1988;47:319-22. 49. Neira C, Sandin DJ, DeFanti TA. Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, 1993;135-42. 50. Nilsson NC, Serafin S, Nordahl R. The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds. In: 2015 IEEE Virtual Reality (VR), 2015: IEEE;249-50. 51. Noton D, Stark L. Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision research 1971;11:929-IN8. 52. Olson JL, Krum DM, Suma EA, Bolas M. A design for a smartphone-based head mounted display. In: 2011 IEEE Virtual Reality Conference, 2011: IEEE;233-4. 53. Pallavicini F, Argenton L, Toniazzi N, Aceti L, Mantovani F. Virtual reality applications for stress management training in the military. Aerospace medicine and human performance 2016;87:1021-30. 54. Racheva K, Totev T, Natchev E, Bocheva N, Beirne R, Zlatkova M. Color discrimination assessment in patients with hypothyroidism using the Farnsworth–Munsell 100 hue test. JOSA A 2020;37:A18-A25. 55. Regan M, Pose R. Priority rendering with a virtual reality address recalculation pipeline. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, 1994;155-62. 56. Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, Gaggioli A, Botella C, Alcañiz M. Affective interactions using virtual reality: the link between presence and emotions. CyberPsychology Behavior 2007;10:45-56. 57. Rizzo AS, Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators Virtual Environments 2005;14:119-46. 58. Rose F, Brooks B, Attree E. Virtual reality in vocational training of people with learning disabilities. In: 3rd International Conference on Disability, Virtual Reality and Associated Technologies, 2000. 59. Rowe F. Visual fields via the visual pathway: Crc Press, 2016. 60. Rubin GS, West SK, Munoz B, Bandeen-Roche K, Zeger S, Schein O, Fried LP. A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project. Investigative ophthalmology visual science 1997;38:557-68. 61. Sacks R, Perlman A, Barak R. Construction safety training using immersive virtual reality. Construction Management and Economics 2013;31:1005-17. 62. Scheiman M. Understanding and managing vision deficits: A guide for occupational therapists: Slack Incorporated, 2011. 63. Schultheis MT, Garay E, DeLuca J. The influence of cognitive impairment on driving performance in multiple sclerosis. Neurology 2001;56:1089-94. 64. Shen R, Weng D, Guo J, Fang H, Jiang H. Effects of Dynamic Disparity on Visual Fatigue Caused by Watching 2D Videos in HMDs. In: Chinese Conference on Image and Graphics Technologies, 2019: Springer;310-21. 65. Silva AR, Valente L, Clua E, Feijó B. An Indoor Navigation System for Live-Action Virtual Reality Games. In: 2015 14th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), 2015;1-10. 66. Steuer J. Defining virtual reality: Dimensions determining telepresence. Journal of communication 1992;42:73-93. 67. Strickland D, Marcus LM, Mesibov GB, Hogan K. Brief report: Two case studies using virtual reality as a learning tool for autistic children. Journal of Autism and Developmental Disorders 1996;26:651-9. 68. Strickland DS. Early intervention for African American children considered to be at risk. Handbook of early literacy research 2001;1:322-32. 69. Tanaka N, Takagi H. Virtual reality environment design of managing both presence and virtual reality sickness. Journal of physiological anthropology and applied human science 2004;23:313-7. 70. Urvoy M, Barkowsky M, Le Callet P. How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. annals of telecommunications-annales des télécommunications 2013;68:641-55. 71. Urvoy MB, Marcus Le Callet, Patrick. How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. annals of telecommunications-annales des télécommunications 2013;68:641-55. 72. van Bommel W, van den Beld G. Lighting for work: a review of visual and biological effects. Lighting research technology 2004;36:255-66. 73. Wang B, Rau P-LP, Dong L. F3-1 Effects of Controller and Body Posture On Simulator Sickness and Visual Fatigue in Virtual Reality. The Japanese Journal of Ergonomics 2017;53:S442-S5. 74. Wang H. How Will Different Control/Display Ratios Influence Muscle Fatigue and Game Experience in Virtual Reality Games? [Dissertation]2016;49p. 75. Wang Y, Liu W, Meng X, Fu H, Zhang D, Kang Y, Feng R, Wei Z, Zhu X, Jiang G. Development of an immersive virtual reality head-mounted display with high performance. Applied optics 2016;55:6969-77. 76. Warren M. A hierarchical model for evaluation and treatment of visual perceptual dysfunction in adult acquired brain injury, part 1. American Journal of Occupational Therapy 1993;47:42-54. 77. Weinbaum SG. Pygmalion's spectacles: Simon and Schuster, 2016. 78. Wloka MM. Lag in multiprocessor virtual reality. Presence: Teleoperators Virtual Environments 1995;4:50-63. 79. Wojciechowski R, Walczak K, White M, Cellary W. Building virtual and augmented reality museum exhibitions. In: Proceedings of the ninth international conference on 3D Web technology, 2004;135-44. 80. Yang T, Kochan NS, Steven SJ, Schmidt G, Bentley JL, Moore DT. Design of a spatially multiplexed light field display on curved surfaces for VR HMD applications. In: Digital Optics for Immersive Displays, 2018: International Society for Optics and Photonics;106760Y. 81. Yu M, Zhou R, Wang H, Zhao W. An evaluation for VR glasses system user experience: The influence factors of interactive operation and motion sickness. Applied ergonomics 2019;74:206-13. 82. 王銘顯. 道路交通標誌的視覺反應 (下). 工業設計. 1984. 83. 江致霖. 振動環境中顯像裝置之適視化模式. 成功大學工業設計學系學位論文 2010:1-106. 84. 李明哲. 以生理回饋評估不同照度環境電腦終端機作業視覺疲勞之研究 [Dissertation]2017p. 85. 卓委樞. VDT 作業眼睛疲勞預防之人因工程介入評估研究. 中山醫學大學職業安全衛生學系碩士班學位論文 2015:1-58. 86. 林書慨. 視覺疲勞與眼睛調節系統之相關研究. 2015. 87. 林智祥. 3D 影像之立體感與舒適度探討. 2014:1-97. 88. 陶冠亨, 歐陽盟. 利用立體顯示器探討視調節微顫動與眼壓對於視覺疲勞之研究 [Dissertation]2013p. 89. 湯禹舜, 歐陽盟. 利用 3D 顯示平台探討視調節微動與視覺疲勞之研究 [Dissertation]2012p. 90. 馮文陽. 照明因子對視覺績效與視覺疲勞之影響. 中原大學工業工程研究所學位論文 2001:1-89. 91. 萬明美. 眼科學/視障教育工學: 五南圖書出版股份有限公司, 2004. 92. 葉士豪, 陳一平. 作業範圍大小對視覺注意力之影響 [Dissertation]2004p. 93. 劉仲瑄. 3D 顯示器與照明情境對裝配作業績效, 視覺疲勞與生理訊號之影響. 中原大學工業與系統工程研究所學位論文 2016:1-170. 94. 蕭坤安. 造形複雜度認知與視覺記憶關係之探討. 設計學報 (Journal of Design) 2008;11. 95. 羅羽辰. 視距與顯示器型態對視覺績效與疲勞之影響. 朝陽科技大學工業工程與管理系學位論文 2010:1-66. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59539 | - |
| dc.description.abstract | 頭戴式虛擬實境(head-mounted virtual reality)裝置在近年來多使用於工作場所之教育訓練、校園知識教育工具或跨足健康領域等。其高沉浸感、可操控、可互動、可即時回饋的特點,結合所需之專業能力內容,成為在職場或學校之新興教育、訓練用輔助工具。但使用虛擬實境時,可能出現使用中或使用後的副作用,包括動暈症以及視覺問題。而這些副作用或許和虛擬裝置的軟硬體、使用時的情境及使用者個人特質有關,進而導致使用上的不舒適,甚至對人體造成健康負面效應,也可能造成各個應用領域使用上的阻礙。本研究欲了解在不同時間長度下使用頭戴式虛擬實境裝置是否會對視覺敏銳度、視覺認知記憶力以及視覺疲勞程度造成影響。
本研究使用頭戴式虛擬實境裝置作為硬體,並以重複性測量的研究設計規劃進一步探索暴露於虛擬環境前後人體視覺表現的差異。視覺測驗包含三大面向: (1)視覺敏銳度: 使用紙本的視力表來測試、(2)視覺認知記憶力:使用色棋以及維也納追蹤系統檢測、 (3)視覺疲勞程度: 使用視覺疲勞主觀評量問卷來做評估。 本研究招募30位20-30歲的志願者參加試驗,受試者包含男性9位、女性21位受試者,排除色盲、色弱者或有重大眼疾者,但矯正後為標準視力者則不在此限。受試者需分別參與5分鐘、20分鐘和45分鐘三次不同時間長度虛擬實境遊戲之實驗,並且於每次實驗前後進行視覺表現測驗。受試者參與的第一次實驗均為5分鐘長度的實驗,之後隨機參與第二次及第三次的20分鐘或45分鐘時間長度測驗。每兩次實驗之間至少間隔一個禮拜。 視覺表現方面的研究結果顯示,受試者左右兩眼的視銳度在後測結果比前測結果有些微下降的趨勢,但未達統計上顯著差異。測驗時間45分鐘組中受試者後測的色棋測驗錯誤分數較前測錯誤分數顯著提升(p<0.05),但後測的色棋測驗使用時間較前測使用時間下降(p<0.05)。同時,測驗時間45分鐘組的受試者,後測之色棋測驗時間分別與視覺追蹤分數呈現顯著負相關(p<0.05),與視覺追蹤時間呈現顯著正相關(p<0.05)。主觀視覺疲勞問卷調查結果在三組測驗時間長度的組別間無顯著差異。 本研究結果顯示,使用頭戴式虛擬實境裝置會對視覺認知記憶力造成負面影響,而對視覺敏銳度和視覺疲勞程度則無觀察到顯著影響。對此未來研究可以針對使用虛擬實境對人眼臨床病理知相關影響做更進一步的探討,以避免使用者在使用頭戴式虛擬實境後因相關病徵而導致其在日常生活或工作上有潛在風險。除此之外也可以針對虛擬實境的易感受族群做相關研究探討,以了解易感受族群在使用頭戴式虛擬實境上和使用頭戴式虛擬實境後可能產生之負面健康效應問題。同時建議有將頭戴式虛擬實境裝置納入教育、工作或訓練的各個職場及領域,在使用虛擬實境的使用時間上盡量保持在45分鐘內,避免因過長使用時間對使用者造成視覺負荷的風險,以保障使用者的健康權益。 | zh_TW |
| dc.description.abstract | Head-mounted (HMD) virtual reality device is becoming a common method used in series for education and training in the workplace, educational campus or health industry. The features of high immersion, operability, interaction, and immediate feedback, combined with professional content make HMD become an emerging education and training aid in the workplace or school. However, some adverse effects of using HMD have been reported, including motion sickness, aftereffects and visual fatigue, which were thought to be associated with the designs of hardware or software, use conditions or users’ characteristics. Using HMD might make user discomfort or lead to adverse health effect, which might in turn become barriers for its application. This study was therefore conducted to explore the effects of using head-mounted virtual reality devices at different lengths of time on visual performance like visual acuity, visual cognitive memory, and visual fatigue.
Head-mounted display and virtual environment were employed in the present study as hardware. Repeated-measurement design was applied to explore the change of vision and visual performance before and after being exposed to virtual environment. The visual performance test consists of four major aspects: (1) visual sensitivity: examined with visual acuity chart, (2) color vision: measured with color chess, (3) visual cognitive memory performance: measured with the Vienna tracking system, (3) visual fatigue: evaluated with subjective visual fatigue questionnaire. In this study, 30 participants (9 males and 21 females) aged 20–30 years were invited to participate in, excluding those with heart disease, mental illness, or severe eye disease but not those with corrected-to-normal vision. Study subjects were required to take three different time-length virtual reality game experiments of 5 minutes, 20 minutes and 45 minutes, respectively, and accept visual performance tests before and after each experiment. Every study subject participated in the 5 minutes experiment first, then randomly followed by 20-minute and 45-minute experiments or 45-minute and 20-minute experiments as the second and the third experiments. There was at least one week apart between every two consecutive experiments. Results of the visual performance shows that the post-test visual acuity of the left and right eyes of the study subjects were lower than those of pre-test, but there was no statistically significant difference. For the 45-minute experiment group, the post-test average error score of the color chess test was significantly higher than that of the pre-test (p<0.05). Average using time for the color chess test in the post-test was shorter than that of the pre-test (p<0.05). Meanwhile, for the 45-minute experiment group, the post-test average error score of the color chess test was negatively correlated with the Vienna tracking score (p<0.05) and positively with the using time for the Vienna tracking test (p<0.05). The self-reported visual fatigue through questionnaire administration doesn’t show significantly different among all the experiment groups. The findings of this study show that the use of head-mounted virtual reality devices has a negative impact on visual cognitive memory, but no significant effect on visual acuity and visual fatigue. Future research is warranted to further explore the impact of using virtual reality on human eyes from the viewpoint of clinicopathology in order to prevent the potential health risks of eye dysfunction resulting from using head-mounted visual reality in daily life and work. In addition, future research could also be extended to the possible adverse visual performance resulting from using head-mounted virtual reality for the susceptible groups. Meanwhile, it is recommended that the using time for head-mounted virtual reality in education, work, and training should be kept within 45 minutes to avoid the risk of causing adverse effect to the users’ eyes in order to protect the health of users. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:27:10Z (GMT). No. of bitstreams: 1 U0001-1408202000452200.pdf: 1619007 bytes, checksum: e8ce67d0c97eedd71d88d3836f90058b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 摘要 II ABSTRACT IV 表目錄 XI 圖目錄 XIII 第一章 前言 1 1.1研究背景 1 1.2研究動機 1 1.3研究目的 2 1.4研究假設 2 第二章 文獻回顧 3 2.1 VR的發展 3 2.2 VR種類與特色介紹 4 2.3 VR的應用與未來趨勢 6 2.3.1 建築營造安全模擬及建築模擬 6 2.3.2遊戲 6 2.3.3 工業/藝術設計 7 2.3.4 教育訓練 7 2.3.5 軍事訓練 7 2.3.6 醫學相關治療 7 2.4 VR的優點 8 2.5 VR使用的缺點 10 2.5.1肌肉疲勞 12 2.5.2視覺不適與視覺疲勞 13 2.6 視覺表現的指標 13 2.6.1視覺敏銳度(visual acuity) 14 2.6.2眼球動作(oculomotor) 14 2.6.3視野(visual fields) 15 2.6.4視覺注意力(visual attention) 15 2.6.5視覺搜索(scanning) 16 2.6.6視覺辨識(visual recognition) 16 2.6.7視覺記憶力(visual memory) 16 2.6.8視覺認知(visual cognition) 17 2.7 VR對視覺的健康效應 17 2.7.1 使用VR造成之不適症狀 17 2.7.2 VR造成視覺輻輳衝突 18 2.7.3 VR造成視覺與本體覺衝突 18 2.7.4 VR的觀看時間限制 19 2.7.5 VR影像的更新延遲 20 2.8 VR相關之各種視覺疲勞影響因子 20 2.9 視覺表現評估 23 2.9.1視覺敏銳度 23 2.9.2視覺認知記憶力 24 2.9.2.1色棋 25 2.9.2.2視覺追蹤測試 25 2.9.3視覺疲勞 25 第三章 研究方法 27 3.1研究架構 27 3.2 研究設計 28 3.2.1虛擬實境內容 28 3.2.2時間長短決定 28 3.2.3研究地點 29 3.2.3.1實驗空間配置 29 3.2.4受試者參與規則 29 3.2.5實驗流程 30 3.2.6視覺表現測試設備 30 3.2.7頭戴式虛擬實境裝置配置 30 3.3 問卷資料介紹 32 3.4 研究工具介紹 32 3.4.1 視覺敏銳度評估 32 視銳度(Visual Acuity) 32 3.4.2視覺辨色能力評估 33 色棋測驗 33 3.4.3視覺認知記憶表現評估 34 視覺追蹤測驗(Visual Pursuit Test) 34 3.4.4 視覺疲勞與舒適程度評估 35 視覺疲勞程度問卷 35 3.5 統計分析 36 第四章 研究結果 37 4.1受試者基本人口學資料 37 4.2受試者使用頭戴式虛擬實境裝置之視覺敏銳度測驗結果 40 4.3 受試者使用頭戴式虛擬實境裝置之視覺辨色能力測驗結果 40 4.3.1 色棋測驗錯誤分數 40 4.3.2 色棋測驗時間 40 4.4 受試者使用頭戴式虛擬實境裝置之視覺認知記憶力測驗結果 41 4.4.1 視覺追蹤測驗分數 41 4.4.2視覺追蹤測驗時間 41 4.5 受試者使用頭戴式虛擬實境裝置後視覺疲勞程度結果探討 42 主觀視覺疲勞度問卷 42 4.5受試者使用頭戴式虛擬實境裝置之相關性分析 49 4.6廣義線性模式(GLM)多因子變異數分析(MANOVA) 56 4.6.1 左眼視銳度影響因子之廣義線性模式多因子變異數分析 56 4.6.2 右眼視銳度影響因子之廣義線性模式多因子變異數分析 56 4.6.3 色棋錯誤分數影響因子之廣義線性模式多因子變異數分析 56 4.6.4 色棋測驗時間影響因子之廣義線性模式多因子變異數分析 56 4.6.5 視覺追蹤分數影響因子之廣義線性模式多因子變異數分析 57 4.6.6視覺追蹤時間影響因子之廣義線性模式多因子變異數分析 57 第五章 討論 64 5.1本研究觀察結果與其他研究結果之比較 64 5.2 影響本研究視覺疲勞與視覺表現因素之探討 66 5.2.1視覺與不同感官衝突造成不適症狀之探討 66 5.2.2使用不同時間頭戴式虛擬實境裝置造成視覺疲勞程度之探討 67 5.2.3視覺辨色能力之探討 68 5.2.4視覺認知記憶能力之探討 69 5.2.5頭戴式虛擬實境裝置的周邊設置對使用者之影響 70 5.2.6 人口學變項對視覺表現之影響 70 5.3研究限制 70 5.4 總結與建議 71 第六章 參考文獻 74 附錄一 研究受試者說明暨同意書 81 附錄二 基本資料問卷 87 附錄三 視覺疲勞問卷 89 附錄四 模擬器動暈症狀問卷 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 追蹤測驗 | zh_TW |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 頭戴式顯示器 | zh_TW |
| dc.subject | 視覺表現 | zh_TW |
| dc.subject | 視覺敏銳度 | zh_TW |
| dc.subject | 視覺辨色力 | zh_TW |
| dc.subject | 視覺認知 | zh_TW |
| dc.subject | 視覺疲勞 | zh_TW |
| dc.subject | 色棋測驗 | zh_TW |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 頭戴式顯示器 | zh_TW |
| dc.subject | 視覺表現 | zh_TW |
| dc.subject | 視覺敏銳度 | zh_TW |
| dc.subject | 視覺辨色力 | zh_TW |
| dc.subject | 視覺認知 | zh_TW |
| dc.subject | 視覺疲勞 | zh_TW |
| dc.subject | 色棋測驗 | zh_TW |
| dc.subject | 追蹤測驗 | zh_TW |
| dc.subject | virtual reality | en |
| dc.subject | visual fatigue | en |
| dc.subject | color chess vision test | en |
| dc.subject | visual pursuit test | en |
| dc.subject | virtual reality | en |
| dc.subject | head-mounted display (HMD) | en |
| dc.subject | visual performance | en |
| dc.subject | visual sensitivity | en |
| dc.subject | color vision | en |
| dc.subject | visual cognition | en |
| dc.subject | visual fatigue | en |
| dc.subject | color chess vision test | en |
| dc.subject | visual pursuit test | en |
| dc.subject | head-mounted display (HMD) | en |
| dc.subject | visual performance | en |
| dc.subject | visual sensitivity | en |
| dc.subject | color vision | en |
| dc.subject | visual cognition | en |
| dc.title | 使用頭戴式虛擬實境裝置對於視覺表現影響 | zh_TW |
| dc.title | Effects of Using Virtual Reality Head-Mounted Display on Visual Performance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 紀佳芬(Jia-Fen Ji),劉耀臨(Yao-Lin Liu),梁蕙雯(Huei-Wun Liang) | |
| dc.subject.keyword | 虛擬實境,頭戴式顯示器,視覺表現,視覺敏銳度,視覺辨色力,視覺認知,視覺疲勞,色棋測驗,追蹤測驗, | zh_TW |
| dc.subject.keyword | virtual reality,head-mounted display (HMD),visual performance,visual sensitivity,color vision,visual cognition,visual fatigue,color chess vision test,visual pursuit test, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU202003352 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-15 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202000452200.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
