請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 細道和夫(Kazuo Hosomichi) | |
| dc.contributor.author | Chia-Wei Chen | en |
| dc.contributor.author | 陳家煒 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:26:54Z | - |
| dc.date.available | 2020-07-20 | |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-05-24 | |
| dc.identifier.citation | [1] Luis Alvarez-Gaume and S. F. Hassan. Introduction to S duality in N=2 supersymmetric gauge theories: A Pedagogical review of the work of Seiberg and Witten. Fortsch. Phys., 45:159-236, 1997.
[2] Philip Argyres, Matteo Lotito, Yongchao L, and Mario Martone. Geometric constraints on the space of N=2 SCFTs I: physical constraints on relevant deformations. 2015. [3] Philip C. Argyres and Michael R. Douglas. New phenomena in su(3) supersymmetric gauge theory. Nuclear Physics B, 448(1):93 - 126, 1995. [4] Philip C. Argyres, Matteo Lotito, Yongchao L, and Mario Martone. Geometric constraints on the space of N=2 SCFTs II: Construction of special Kahler geometries and RG flows. 2015. [5] Philip C Argyres, M Ronen Plesser, Nathan Seiberg, and Edward Witten. New n= 2 superconformal field theories in four dimensions. Nuclear Physics B, 461(1):71 - 84, 1996. [6] Philip C. Argyres and Nathan Seiberg. S-duality in N=2 supersymmetric gauge theories. JHEP, 12:088, 2007. [7] Tom Banks, Michael R. Douglas, and Nathan Seiberg. Probing F theory with branes. Phys. Lett., B387:278-281, 1996. [8] Oliver DeWolfe and Barton Zwiebach. String junctions for arbitrary Lie algebra representations. Nucl. Phys., B541:509-565, 1999. [9] Matthias R. Gaberdiel and Barton Zwiebach. Exceptional groups from open strings. Nucl. Phys., B518:151-172, 1998. [10] Amihay Hanany and Edward Witten. Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys., B492:152- 190, 1997. [11] A. Johansen. A Comment on BPS states in F theory in eight-dimensions. Phys. Lett., B395:36-41, 1997. [12] K. Kodaira. On the structure of compact complex analytic surfaces, i. American Journal of Mathematics, 86(4):751-798, 1964. [13] K. Kodaira. On the structure of compact complex analytic surfaces, ii. American Journal of Mathematics, 88(3):682-721, 1966. [14] Kazunobu Maruyoshi and Jaewon Song. N = 1 deformations and RG flows of N= 2 SCFTs. JHEP, 02:075, 2017. [15] Joseph A. Minahan and Dennis Nemeschansku. An n = 2 superconformal fixed point with e6 global symmetry. Nuclear Physics B, 482(1):142 - 152, 1996. [16] Joseph A. Minahan and Dennis Nemeschansky. Superconformal fixed points with en global symmetry. Nuclear Physics B, 489(1):24 - 46, 1997. [17] N. Seiberg and E. Witten. Electric-magnetic duality, monopole condensation, and confinement in n=2 supersymmetric yang-mills theory. Nuclear Physics B, 426(1):19 - 52, 1994. [18] N. Seiberg and E. Witten. Monopoles, duality and chiral symmetry breaking in n = 2 supersymmetric qcd. Nuclear Physics B, 431(3):484 - 550, 1994. [19] Ashoke Sen. F theory and orientifolds. Nucl. Phys., B475:562-578, 1996. [20] Yuji Tachikawa. N=2 supersymmetric dynamics for pedestrians, volume 890. 2014. [21] Cumrun Vafa. Evidence for F theory. Nucl. Phys., B469:403-418, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59532 | - |
| dc.description.abstract | 這篇論文總結了如何運用Seiber-Witten 曲線定義N=2 超對稱量子場論真空態上的低能量有效理論,同時分析在形變之下代表著不同真空的模空間構造如何變化。為了介紹基礎的概念,引進SU(2)規範場論的例子來描述以上的分析。同時介紹了另一種從超弦理論中的F-理論中推導出N=2 超對稱規範場論的方法,以另一種角度分析真空的模空間構造,並且能找到對應其幾何構造的ADE-奇異點。這些奇異點等效上定義了局域的模空間構造,並且分類出7種對應於共形場論的奇異點。反過來以共形對稱的真空模空間來定義出秩1超對稱共形場論,並且加以自然條件來尋找出可能存在的共形場論。這些共形場論是強耦合的理論,並不持有拉格朗日量來描述其下的物理性質,微擾理論無法用於分析此種場論。僅有其味對稱性及特定的非微擾量可以被分析出來。 | zh_TW |
| dc.description.abstract | I study low energy theory on Coulomb branch of N=2 theory using Seiberg-Witten curves and SW differential. Various generalization of curve for rank 1 gauge theories have been found for decades. A series of non-Lagrangian interacting N=2 SCFT with ADE type global symmetry has been predicted and corresponding curves are constructed. I review on basic ingredients used to analyse N=2 SU(2) gauge theory where Seiberg-Witten curve will be introduced. I also review rank-1 Argyres-Douglas theories and string theory approach to N=2 gauge theory. Finally I will review the classification of N=2 rank 1 SCFTs using geometric constraints and relevant deformations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:26:54Z (GMT). No. of bitstreams: 1 ntu-106-R04222039-1.pdf: 1114058 bytes, checksum: c06627bb6e0515c8d8967682e313a58b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 1 Introduction 7
2 N = 2 Supersymmetric theory 9 2.1 N = 2 supersymmetry 9 2.1.1 N = 1 formalism 9 2.1.2 N = 2 Lagrangian 10 2.1.3 Supersymmetric vacua and BPS state 12 2.1.4 Low energy effective action 14 2.2 N = 2 SU(2) Super Yang-Mills theory 18 2.2.1 Classical Moduli Space 18 2.2.2 Quantum Moduli Space 19 2.2.3 General property of singularity 23 2.2.4 Seiberg-Witten Curve 24 2.3 N = 2 SU(2) gauge theory with Nf flavors 26 2.3.1 Moduli space structure of Nf = 1; 2; 3; 4 cases 28 2.3.2 Seiberg-Witten curve for Nf =1,2,3,4 cases 30 2.3.3 Properties of curve in SQCD 34 2.3.4 SW-one-form in SQCD 35 3 4D N = 2 theory from string theory 36 3.1 Classication of monodromy 38 3.2 String junctions and 7-brane conguration 40 3.2.1 String junction 41 3.2.2 SU(n) symmetry 44 3.2.3 SO(2n) symmetry 44 3.2.4 En symmetry 47 3.3 Summary 48 4 4D N = 2 SCFTs and geometry 50 4.1 Scale invariant SW-theory 51 4.2 Argyres-Douglas theory 56 4.3 MN's En SCFT 60 4.4 Constraints on N = 2 SCFTs 60 4.4.1 Kodaira classication of SK geometry 61 4.4.2 Deformations and safely irrelevant conjecture 67 4.4.3 Deformation pattern and undeformable singularities 69 4.4.4 Physical constraints 74 4.4.5 RG flow condition 76 5 Frozen N = 2 SCFTs 76 5.1 Construction of sub-maximal SW curves 77 5.2 Construction of SW-one-form 83 5.3 RG flow constraints 88 6 Conclusion and future work 94 Bibliography 96 | |
| dc.language.iso | en | |
| dc.subject | Argyres-Douglas 理論 | zh_TW |
| dc.subject | Seiberg-Witten 曲線 | zh_TW |
| dc.subject | N=2 | zh_TW |
| dc.subject | 共形場論 | zh_TW |
| dc.subject | Coulomb branch | zh_TW |
| dc.subject | F-理論 | zh_TW |
| dc.subject | Seiberg-Witten curve | en |
| dc.subject | Argyres-Douglas theory | en |
| dc.subject | F-theory | en |
| dc.subject | Coulomb branch | en |
| dc.subject | conformal field theory | en |
| dc.subject | N=2 | en |
| dc.title | N=2超對稱共形場論的分類 | zh_TW |
| dc.title | Classification of N=2 Superconformal Field Theory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳恒榆(Heng-Yu Chen),賀培銘(Pei-Ming Ho) | |
| dc.subject.keyword | Seiberg-Witten 曲線,N=2,共形場論,Coulomb branch,F-理論,Argyres-Douglas 理論, | zh_TW |
| dc.subject.keyword | Seiberg-Witten curve,N=2,conformal field theory,Coulomb branch,F-theory,Argyres-Douglas theory, | en |
| dc.relation.page | 97 | |
| dc.identifier.doi | 10.6342/NTU201700849 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-05-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
