Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬(Yi-Pin Lin)
dc.contributor.authorI-Chia Lien
dc.contributor.author李宜珈zh_TW
dc.date.accessioned2021-06-16T09:26:41Z-
dc.date.available2022-07-20
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-01
dc.identifier.citationAiken, G. R., McKnight, D. M., Wershaw, R. L., & MacCarthy, P. (1985).Humic substances in soil, sediment, and water: geochemistry, isolation and characterization. John Wiley & Sons.
Ankley, G. T., Di Toro, D. M., Hansen, D. J., & Berry, W. J. (1996). Technical basis and proposal for deriving sediment quality criteria for metals. Environmental Toxicology and Chemistry, 15(12), 2056-2066.
Biver, M., & Shotyk, W. (2012). Stibnite (Sb 2 S 3) oxidative dissolution kinetics from pH 1 to 11. Geochimica et Cosmochimica Acta, 79, 127-139.
Bondietti, G., Sinniger, J., & Stumm, W. (1993). The reactivity of Fe (III)(hydr) oxides: effects of ligands in inhibiting the dissolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 79(2-3), 157-167.
Brantley, S. L. (2008). Kinetics of mineral dissolution. In Kinetics of water-rock interaction (pp. 151-210). Springer New York.
Buffle, J. A. E. (1977). Les substances humiques et leurs interactions avec les ions mineraux. In Conference Proccedings de la Commission d’Hydrologie Appliquée de l’AGHTM.
Calmano, W., Hong, J., & Förstner, U. (1993). Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential.Water science and technology, 28, 223-223.
Chandrakanth, M. S., & Amy, G. L. (1996). Effects of ozone on the colloidal stability and aggregation of particles coated with natural organic matter. Environmental science & technology, 30(2), 431-443.
Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., & Billon, G. (2011). Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Applied Geochemistry, 26(1), 80-90.
Cheah, S. F., Kraemer, S. M., Cervini-Silva, J., & Sposito, G. (2003). Steady-state dissolution kinetics of goethite in the presence of desferrioxamine B and oxalate ligands: implications for the microbial acquisition of iron. Chemical Geology, 198(1), 63-75.
Chen, K. L., & Elimelech, M. (2008). Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environmental science & technology, 42(20), 7607-7614.
Chen, K. L., Mylon, S. E., & Elimelech, M. (2006). Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental science & technology, 40(5), 1516-1523.
Crundwell, F. K. (1987). Kinetics and mechanism of the oxidative dissolution of a zinc sulphide concentrate in ferric sulphate solutions. Hydrometallurgy, 19(2), 227-242.
Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R., & Ankley, G. T. (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science & Technology,26(1), 96-101.
Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. B., Mayr, S. M., & Redmond, M. S. (1990). Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry, 9(12), 1487-1502.
Drever, J. I., & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 120(1-3), 167-181.
Fornasiero, D., Li, F., Ralston, J., & Smart, R. S. C. (1994). Oxidation of galena surfaces: I. X-ray photoelectron spectroscopic and dissolution kinetics studies. Journal of colloid and interface science, 164(2), 333-344.
Furrer, G., & Stumm, W. (1986). The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochimica et Cosmochimica Acta, 50(9), 1847-1860.
Ghosh, S., Mashayekhi, H., Pan, B., Bhowmik, P., & Xing, B. (2008). Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir, 24(21), 12385-12391.
Hargrave, B. T., Holmer, M., & Newcombe, C. P. (2008). Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin, 56(5), 810-824.
Heijs, S. K., Jonkers, H. M., Van Gemerden, H., Schaub, B. E. M., & Stal, L. J. (1999). The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d’Arcachon, France)—the relative importance of chemical and biological processes. Estuarine, Coastal and Shelf Science, 49(1), 21-35.
Hermann, R., & Neumann-Mahlkau, P. (1985). The mobility of zinc, cadmium, copper, lead, iron and arsenic in ground water as a function of redox potential and pH. Science of the Total Environment, 43(1-2), 1-12.
Hsieh, Y. H., & Huang, C. P. (1989). The dissolution of PbS (s) in dilute aqueous solutions. Journal of colloid and interface science, 131(2), 537-549.
Kanaya, G., Maki, H., Chiba, F., Miura, K., Fukuchi, S. I., Sasaki, H., & Nishimura, O. (2016). Impacts of Fuel Spills Caused by the Great East Japan Earthquake and Tsunami on the Subtidal Soft-Bottom Communities of a Semi-enclosed Bay Located on the Sanriku Coast. In Ecological Impacts of Tsunamis on Coastal Ecosystems (pp. 223-250). Springer Japan.
Ko, C. H., Chen, W. L., Tsai, C. H., Jane, W. N., Liu, C. C., & Tu, J. (2007). Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresource technology, 98(14), 2727-2733.
Kraemer, S. M., Chiu, V. Q., & Hering, J. G. (1998). Influence of pH and competitive adsorption on the kinetics of ligand-promoted dissolution of aluminum oxide. Environmental science & technology, 32(19), 2876-2882.
Lee, J. S., & Lee, J. H. (2005). Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata. Science of the total environment, 338(3), 229-241.
Mattigod, S. V., Sposito, G., & Page, A. L. (1981). Factors affecting the solubilities of trace metals in soils. Chemistry in the soil environment, (chemistryinthes), 203-221.
Morse, J. W., & Cornwell, J. C. (1987). Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Marine Chemistry, 22(1), 55-69.
Nolting, R. F., Gerringa, L. J. A., Swagerman, M. J. W., Timmermans, K. R., & De Baar, H. J. W. (1998). Fe (III) speciation in the high nutrient, low chlorophyll Pacific region of the Southern Ocean. Marine Chemistry, 62(3), 335-352.
Ravichandran, M., Aiken, G. R., Reddy, M. M., & Ryan, J. N. (1998). Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environmental Science & Technology, 32(21), 3305-3311.
Rickard, D. (1995). Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et cosmochimica acta, 59(21), 4367-4379.
Schulze, E. D., & Mooney, H. A. (1993). Design and execution of experiments on CO2 enrichment.
Schwertmann, U., & Cornell, R. M. (2008). Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons.
Stevenson, F. J. (1982). Organic forms of soil nitrogen. Nitrogen in agricultural soils, (nitrogeninagrics), 67-122.
Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions. John Wiley & Sons.
Stumm, W. (1992). Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. John Wiley & Son Inc.
U.S. Environmental Protection Agency. (2005) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver, zinc). EPA/600/R-02/011. Office of Research and Development, Washington, DC.
Völker, C., & Wolf-Gladrow, D. A. (1999). Physical limits on iron uptake mediated by siderophores or surface reductases. Marine Chemistry, 65(3), 227-244.
Wehrli, B., Wieland, E., & Furrer, G. (1990). Chemical mechanisms in the dissolution kinetics of minerals; the aspect of active sites. Aquatic Sciences, 52(1), 3-31.
Wieland, E., Wehrli, B., & Stumm, W. (1988). The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals. Geochimica et Cosmochimica Acta, 52(8), 1969-1981.
Zinder, B., Furrer, G., & Stumm, W. (1986). The coordination chemistry of weathering: II. Dissolution of Fe (III) oxides. Geochimica et Cosmochimica Acta, 50(9), 1861-1869.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59526-
dc.description.abstract底泥中的硫化金屬在厭氧環境下,可使重金屬穩定化並且降低其生物可及性。然而,因暴雨造成之河川紊流或是生物擾動可能使硫化金屬暴露在耗氧環境中,進而導致其氧化溶解並釋放有毒重金屬至生態環境中。本研究之目的為探討溶氧pH值及天然有機物吸附對硫化鉛、硫化銅及硫化鋅溶解之影響。
本研究使用黃酸(fulvic acid)做為天然有機物,並利用連續曝氣裝置在中性及厭氧環境下進行10小時之等溫吸附實驗,研究結果顯示硫化金屬表面之天然有機物吸附量為:硫化鉛 > 硫化銅 > 硫化鋅。溶解實驗首先針對未吸附天然有機物之硫化金屬在不同溶氧(DO = 0 mg/L, 5 mg/L, 8.4 mg/L)及pH值(pH 5, pH 7, pH 10)下,進行3天之批次溶解實驗。硫化金屬在高溶氧(DO = 8.4 mg/L)及低pH值(pH 5)環境下釋出最多金屬離子,一般而言溶解量之序列為:硫化鉛 > 硫化銅 > 硫化鋅。在厭氧情況下(DO = 0 mg/L),硫化金屬的溶解主要由氫離子導致 (proton-induced dissolution),而在氧氣存在條件下,氧化溶解(oxidative dissolution)及氫離子導致之溶解則須同時考慮。其中,氧化溶解對硫化銅及硫化鋅的金屬離子的釋出影響較為顯著; 在pH 10,三種硫化金屬都屬穩定,從pH 7 降到 pH 5,硫化鉛及硫化銅金屬量都顯著增加,而硫化鋅則無明顯變化。
針對天然有機物吸附對不同硫化金屬溶解的影響,實驗以不同黃酸吸附量之硫化金屬在飽和溶氧(DO= 8.4 mg/L)及中性(pH 7)環境下進行。黃酸吸附對硫化金屬溶解的影響有二:因黃酸吸附導致之配位基引起之礦物溶解(ligand-induced dissolution),及因黃酸吸附於硫化金屬表面形成一保護層,避免溶氧及氫離子之攻擊,而降低溶解量。結果顯示,黃酸能有效抑制硫化鉛及硫化鋅的溶解,且抑制效果隨其表面黃酸吸附量增加而增強,顯示黃酸吸附並不會引起顯著之配位基礦物溶解,相反的,其吸附可有效抑制溶氧及氫離子對硫化鉛及硫化鋅的攻擊。但對硫化銅而言,天然有機物吸附對其溶解隨吸附量增加呈現先促進後減緩之趨勢,然而氧化溶解仍為其主要溶解機制。
zh_TW
dc.description.abstractMetal sulfides in sediment can immobilize and decrease the bioavailability of heavy metals under anaerobic conditions. However, storm events and bioturbation may suspend metal sulfides and expose them to aerobic conditions, causing oxidative dissolution and release of harmful heavy metals to the ecosystem. The objective of this research is to investigate the influences of dissolve oxygen (DO), pH value and natural organic matter (NOM) adsorption on the dissolution of PbS, CuS, and ZnS.
In this research, fulvic acid was used as a NOM model compound, and NOM adsorption isotherm experiments were conducted using a continuous aeration setup at neutral and anaerobic conditions. Results showed that NOM adsorption capacity of the three metal sulfides was in the order of PbS > CuS > ZnS. Dissolution experiments were firstly conducted using metal sulfides without NOM adsorption under different DO concentrations (0 mg/L, 5mg/L, 8.4 mg/L) and pH values (pH 5, pH 7, pH 10) for 3 days. The obtained results demonstrated that metal sulfides generally release more metal ions at high DO and low pH conditions. The metal release showed the following sequence: PbS > CuS > ZnS. Under anaerobic conditions (DO = 0 mg/L), the dissolution of metal sulfide is mainly resulted from proton-induced dissolution. Under aerobic conditions, on the other hand, both oxidative dissolution and proton-induced dissolution should be simultaneously considered. It was found that oxidative dissolution contributed significantly to metal release of CuS and ZnS. At pH 10, the three metal sulfides were relatively stable. A decrease of pH 7 to 5 induced significant metal release from PbS and CuS but no obvious difference for ZnS.
To understand the impact of NOM adsorption on the dissolution of metal sulfides, experiments were conducted using metal sulfides adsorbed with different levels of fulvic acid at saturated DO (DO = 8.4 mg/L) and neutral conditions (pH 7). The influences of NOM adsorption on metal sulfide dissolution could be attributed to two distinct impacts: 1. Enhanced metal release resulting from fulvic acid adsorption via ligand-induced dissolution and 2. Formation of a barrier to protect the surfaces of metal sulfides from DO and proton attacks, in turn, reducing dissolution. Fulvic acid was found to effectively inhibit PbS and ZnS dissolution and the inhibition could be enhanced by the increasing level of NOM adsorption. This result indicated that fulvic acid adsorption could not cause significant ligand-induced dissolution for PbS and ZnS but effectively protect their surfaces from DO and proton attacks. As for CuS, its dissolution was mainly caused by the oxidative dissolution and the rate of dissolution was found to increase then decrease with the increasing level of NOM adsorption.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:26:41Z (GMT). No. of bitstreams: 1
ntu-106-R03541205-1.pdf: 2081265 bytes, checksum: 134b44d6746be88d43ee492d2515bccd (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝…………………………………………………………………………………….....................I
摘要………………………………………………………………………………….....................II
Abstract………………………………………………………………………………..................IV
Contents……………………………………………………………………………...................VI
List of Figures………………………………….……………………………….............VIII
List of Tables…………………………………………………………………………...............X
Abbreviations………………………………………………………………………................XI
Chapter 1 Introduction………………………………………………………………...........1
1.1 Background…………………………………………………………………..................1
1.2 Hypothesis and Objectives………………………..………………………….......2
Chapter 2 Literature Review…………………………………………………………........3
2.1 Metal sulfides in the environment……………..……………………………..3
2.2 Oxidative dissolution of metal sulfides………………………………..4
2.3 Proton and ligand induced dissolution……………………………………….5
2.4 Interactions between NOM and metal sulfides…………………………8
Chapter 3 Materials and Methods……………………………………...……………...12
3.1 Chemicals and solution preparation………………………………………...12
3.2 Experimental methods………………………………………………………...........14
3.3 Analytical methods…………………………………………………………............18
Chapter 4 Results and Discussion……………………………………………………....19
4.1Effects of DO on the dissolution of metal sulfides…….19
4.2 Effects of pH on the dissolution of metal sulfides……22
4.3 Adsorption isotherms of NOM onto PbS, CuS and ZnS…….25
4.4 General impacts of NOM adsorption on the dissolution of metal sulfides....30
4.5 Effects of NOM adsorption level on the dissolution of metal sulfides……..36
4.6 Effects of pH on the dissolution of metal sulfides with NOM adsorption…...39
4.7 SEM-EDX Analysis of PbS, CuS and ZnS…………………………………...41
Chapter 5 Conclusions and Recommendations………………………………………43
5.1 Conclusions…………………………………………………………………................43
5.2 Recommendations……………………………………………………….…..............45
References…………………………………………………………………………….................46
Appendix A. Results of Dissolution without Normalizing……53
Appendix B. Minerals Saturation Index………………………………………....58
dc.language.isoen
dc.title底泥硫化金屬的溶解:溶氧、pH、天然有機物吸附之影響zh_TW
dc.titleDissolution of Sedimental Metal Sulfides: Effects of DO, pH and NOM Adsorptionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳先琪(Shian-chee Wu),陳佩貞(Pei-Jen Chen)
dc.subject.keyword天然有機物,硫化金屬,氧化溶解,zh_TW
dc.subject.keywordNatural organic matter,Metal sulfides,Oxidative dissolution,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201700865
dc.rights.note有償授權
dc.date.accepted2017-06-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved