請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59517完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊裕澤(Yuh-Jzer Joung) | |
| dc.contributor.author | Jin-Lun Yang | en |
| dc.contributor.author | 楊進倫 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:26:21Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | Adikari, S. Dutta, K. (2014). Identifying Fake Profiles In LinkedIn. Pacific Asia Conference on Information Systems (PACIS) 2014. Alexa (2019). Alexa Top 500 Global Sites. Retrieved from https://www.alexa.com/topsites Barron, A. (2006). Understanding spam: A macro-textual analysis. Journal of Pragmatics Beker, H. Piper, F. (1982). Cipher systems: The protection of communications. Northwood Books. Bischoff, P. (2020). Report: 267 million Facebook users IDs and phone numbers exposed online. Retrieved from https://www.comparitech.com/blog/information-security/267-million-phone-numbers-exposed-online/ Cadwalladr, C. Graham-Harrison, E. (2018, March 17). Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data breach. The Guardian. Retrieved from https://www.theguardian.com Chu, Z., Gianvecchio, S., Wang, H. Jajodia, S. (2010). Who is tweeting on Twitter: human, bot, or cyborg? Proceeding ACSAC '10 Proceedings of the 26th Annual Computer Security Applications Conference Pages 21-30. Facebook (2020). Facebook Community Standards. Retrieved from https://www.facebook.com/communitystandards/ Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y. Zhao, B.Y. (2010). Detecting and Characterizing Social Spam Campaigns. Proceeding IMC '10 Proceedings of the 10th ACM SIGCOMM conference on Internet measurement Pages 35-47. Gurajala, S., White J.S., Hudson, B., Voter, B.R. Matthews J.N. (2016). Profile characteristics of fake Twitter accounts. Big data society., 2016, Vol.3(2). Krebs, B. (2019). Facebook Stored Hundreds of Millions of User Passwords in Plain Text for Years. Retrieved from https://krebsonsecurity.com/2019/03/facebook-stored-hundreds-of-millions-of-user-passwords-in-plain-text-for-years/ Mechkova, V., Pemstein, D., Seim, B., Wilson, S. Wang, T. (2019). Democracy Facing Global Challenges: Threats to Democracy in the Digital Age. V-DEM Annual Democracy Report 2019 (P.34-P.37). Retrieved from https://www.v-dem.net/media/filer_public/99/de/99dedd73-f8bc-484c-8b91-44ba601b6e6b/v-dem_democracy_report_2019.pdf PTT (民109). 使用者條款2.0.1. 取自https://www.ptt.cc/index.ua.html Rosen, G. (2019). An Update on How We Are Doing At Enforcing Our Community Standards. Retrieved from https://about.fb.com/news/2019/05/enforcing-our-community-standards-3/ Shakil, I. Maler, S. (2019, August 7). Twitter says it may have used user data for ads without permission. Reuters. Retrieved from https://www.reuters.com Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A. Menczer, F. (2017). The spread of fake news by social bots. Smith, A. Anderson, M. (2018). Pew Research Center: Social Media Use in 2018. Retrieved from https://www.pewresearch.org/internet/2018/03/01/social-media-use-in-2018/ Stringhini, G., Kruegel, C. Vigna, G. (2010). Detecting Spammers on Social Networks. ACSAC '10: Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC ’10. ACM, New York, NY, USA, pp. 1–9. Stroppa, A., Gatto, D., Pasha, L. Parrella, B. (2019). Instagram and counterfeiting in 2019. Twitter (2020). Twitter Help Center. Retrieved from https://help.twitter.com/en Xiao, C., Freeman, D.M. Hwa, T. (2015). Detecting Clusters of Fake Accounts in Online Social Networks. Proceeding AISec '15 Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security Pages 91-101. Yan, J., Blackwell, A., Anderson, R. Grant, A. (2000). The Memorability and Security of Passwords-Some Empirical Results. Yang, Z., Wilson, C., Wang, X., Gao, T, Zhao, B.Y. Dai, Y. (2014). Uncovering social network Sybils in the wild. Journal ACM Transactions on Knowledge Discovery from Data (TKDD) Volume 8 Issue 1. Zafarani, R. Liu, H. (2015). 10 Bits of Surprise: Detecting Malicious Users with Minimum Information. Proceeding CIKM '15 Proceedings of the 24th ACM International on Conference on Information and Knowledge Management Pages 423-431. 內政部警政署(民108)。108年第8週(107年網路犯罪概況)。取自 https://www.npa.gov.tw/NPAGip/wSite/ct?xItem=90979 ctNode=12594 mp=1 財團法人台灣網路資訊中心(民107)。2018年台灣網路報告:P.56-P.62。取自 https://www.twnic.net.tw/doc/twrp/201812e.pdf | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59517 | - |
| dc.description.abstract | 隨著資訊科技日益發達與網路技術普及化下,越來越多人開始使用線上社群媒體。隨著線上社群媒體的普及化,越來越多的有心人士運用它的匿名性及社群影響力,從事網路犯罪行為,例如:網路詐欺、散布惡意程式、散布假消息、假新聞……等。這些犯罪大部分都與異常帳號密不可分,惡意使用者藉由它們隱藏自己的身分,博取其他人的信任及避免執法人員的追查。根據研究指出,Facebook約有8,800萬活耀的異常帳號,Instagram則約有 9,500萬個異常帳號。 目前國外已有許多關於惡意使用者的相關研究,然而國內較為缺乏相關的研究,並且近年國內不斷遭受假消息與假新聞的攻擊,這些都與他們操控的帳號有關。因此,本研究以國內大型論壇之一的PTT為目標,根據帳號有限的公開資料,分析PTT正常與異常帳號特徵的差異,並且建立一套分類器,提升PTT偵測異常帳號的效率。 本實驗分析PTT帳號的特徵後,發現異常帳號在使用者名稱上,並沒有明顯較高的複雜性、隨機性。然而,在活動時間的部分,異常帳號與正常帳號確實具有不同的特徵。最後,本研究將以帳號申請機制、運作模式及使用者族群的角度,分析為何PTT異常帳號會有上述特徵。 | zh_TW |
| dc.description.abstract | With the development of information technology and the popularization of Internet technology, more and more people are using online social media. With the popularization of online social media, more and more people use its anonymity and community influence to engage in cybercrime, such as fraud, dissemination of malicious programs, misinformation or fake news…etc. Most of these crimes are strongly related to abnormal accounts. Malicious users hide their identities by using these accounts, gaining the trust of other users and avoiding the investigation by law-enforcement officials. According to recent research, Facebook has about 88 million abnormal accounts, and Instagram has about 95 million abnormal accounts. There are a number of researches on malicious users in foreign countries, but there are few related researches in Taiwan. In recent years, Taiwan has been continuously attacked by misinformation and fake news, which are disseminated by these accounts. Therefore, our study focuses on PTT, one of the large forums in Taiwan. We analyze the differences in the characteristics between normal and abnormal accounts with limited user information, and establish a classifier to improve the efficiency of detecting abnormal accounts in PTT. By analyzing the characteristics of the PTT account, our study found that the abnormal account has no significantly higher complexity and randomness in the user name. However, the abnormal account has different characteristics from the normal accounts in the activity. Finally, our research analyzes the reasons of this outcome from the perspective of account registration system, social media features and user groups. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:26:21Z (GMT). No. of bitstreams: 1 U0001-1408202001252500.pdf: 3024584 bytes, checksum: cbd97500a15eed1bba8be422f8ef998f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 第一章、緒論 1 1.1 研究背景 1 1.2 研究動機 3 第二章、文獻探討 5 2.1 線上社群網路(Online Social Network) 5 2.1.1 Facebook 6 2.1.2 Twitter 7 2.1.3 PTT 8 2.2 異常帳號 9 2.2.1 Facebook異常帳號 9 2.2.2 Twitter 異常帳號 11 2.2.3 PTT異常帳號 12 2.3 異常帳號的行為特徵 14 2.4 相關技術文獻探討 25 2.4.1 特徵基礎分類器 25 2.4.2 連結關係分類器 30 2.5 小結 32 第三章、研究方法 34 3.1 研究問題 34 3.2 研究架構 35 3.3 資料蒐集 36 3.4 特徵分析 37 3.5 訓練模型 44 第四章、實驗結果 48 4.1 資料分析 48 4.1.1 使用者名稱 48 4.1.2 活動紀錄 51 4.2 實驗結果 53 4.3 比較不同類特徵的模型表現 56 4.4 與其他實驗比較 57 第五章、結論 59 5.1 研究成果 59 5.2 研究限制 60 5.3 研究貢獻 61 5.4 未來研究方向 64 參考文獻 65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 社群網路 | zh_TW |
| dc.subject | 批踢踢 | zh_TW |
| dc.subject | 異常帳號 | zh_TW |
| dc.subject | 惡意使用者 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 社群網路 | zh_TW |
| dc.subject | 批踢踢 | zh_TW |
| dc.subject | 異常帳號 | zh_TW |
| dc.subject | 惡意使用者 | zh_TW |
| dc.subject | PTT | en |
| dc.subject | Machine Learning | en |
| dc.subject | Social Media | en |
| dc.subject | Fake account | en |
| dc.subject | Machine Learning | en |
| dc.subject | Malicious User | en |
| dc.subject | Fake account | en |
| dc.subject | PTT | en |
| dc.subject | Social Media | en |
| dc.subject | Malicious User | en |
| dc.title | PTT異常帳號偵測 | zh_TW |
| dc.title | Detecting Abnormal Accounts In PTT | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏志平(Chih-Ping Wei),蔡益坤(Yih-Kuen Tsay),查士朝(Shi-Cho Cha) | |
| dc.subject.keyword | 機器學習,社群網路,批踢踢,異常帳號,惡意使用者, | zh_TW |
| dc.subject.keyword | Machine Learning,Social Media,PTT,Fake account,Malicious User, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU202003359 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202001252500.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
