Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorEn Jenen
dc.contributor.author任恩zh_TW
dc.date.accessioned2021-06-16T09:26:13Z-
dc.date.available2020-07-20
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-05
dc.identifier.citation[1] S. J. Shefchyk, 'Spinal cord neural organization controlling the urinary bladder and striated sphincter,' Elsevier Science, vol. 137, p. 12, 2002.
[2] K. Akita, H. Sakamoto, and T. Sato, 'Origins and courses of the nervous branches to the male urethral sphincter,' Surgical and Radiologic Anatomy, vol. 25, pp. 387-392, 2003.
[3] V. K. Shea, R. Cai, B. Crepps, J. L. Mason, and E. R. Perl, 'Sensory Fibers of the Pelvic Nerve Innervating the Rat's Urinary Bladder,' Journal of Neurophysiology, vol. 84, pp. 1924-1933, 2000-10-01 00:00:00 2000.
[4] Y. Yu and W. C. de Groat, 'Sensitization of pelvic afferent nerves in the in vitro rat urinary bladder-pelvic nerve preparation by purinergic agonists and cyclophosphamide pretreatment,' American Journal of Physiology - Renal Physiology, vol. 294, pp. F1146-F1156, 2008-05-01 00:00:00 2008.
[5] A. S. Burns, D. A. Rivas, and J. F. Ditunno, 'The Management of Neurogenic Bladder and Sexual Dysfunction After Spinal Cord Injury,' Spine, vol. 26, pp. S129-S136, 2001.
[6] A. M. Murphy, R. M. Krlin, and H. B. Goldman, 'Treatment of overactive bladder: what is on the horizon?,' International Urogynecology Journal, vol. 24, pp. 5-13, 2012.
[7] M. Faul, L. Xu, M. M. Wald, and V. Coronado, 'Traumatic brain injury in the United States,' Atlanta, GA: national Center for injury Prevention and Control, Centers for disease Control and Prevention, 2010.
[8] M. Prins, T. Greco, D. Alexander, and C. C. Giza, 'The pathophysiology of traumatic brain injury at a glance,' Disease models and mechanisms, vol. 6, pp. 1307-1315, 2013.
[9] A. I. Maas, N. Stocchetti, and R. Bullock, 'Moderate and severe traumatic brain injury in adults,' The Lancet Neurology, vol. 7, pp. 728-741, 2008.
[10] F. N. Burks, D. T. Bui, and K. M. Peters, 'Neuromodulation and the neurogenic bladder,' Urologic Clinics of North America, vol. 37, pp. 559-565, 2010.
[11] B. E. Masel and D. S. DeWitt, 'Traumatic brain injury: a disease process, not an event,' Journal of neurotrauma, vol. 27, pp. 1529-1540, 2010.
[12] K. Oostra, K. Everaert, and M. Van Laere, 'Urinary incontinence in brain injury,' Brain injury, vol. 10, pp. 459-464, 1996.
[13] A. V. Moiyadi, B. I. Devi, and K. Nair, 'Urinary disturbances following traumatic brain injury: clinical and urodynamic evaluation,' NeuroRehabilitation, vol. 22, pp. 93-98, 2007.
[14] B. J. Moody, C. Liberman, P. Zvara, P. P. Smith, K. Freeman, and K. Zvarova, 'Acute lower urinary tract dysfunction (LUTD) following traumatic brain injury (TBI) in rats,' Neurourology and urodynamics, vol. 33, pp. 1159-1164, 2014.
[15] N. Y. Siddiqui, J. M. Wu, and C. L. Amundsen, 'Efficacy and adverse events of sacral nerve stimulation for overactive bladder: A systematic review,' Neurourology and Urodynamics, vol. 29, pp. S18-S23, 2010.
[16] A. E. Snellings and W. M. Grill, 'Effects of stimulation site and stimulation parameters on bladder inhibition by electrical nerve stimulation,' BJU international, vol. 110, pp. 136-143, 2012.
[17] C. Tai, B. Shen, J. Wang, H. Liu, J. Subbaroyan, J. R. Roppolo, et al., 'Inhibition of bladder overactivity by stimulation of feline pudendal nerve using transdermal amplitude‐modulated signal (TAMS),' BJU international, vol. 109, pp. 782-787, 2012.
[18] Y. Tian, L. Liao, and J. J. Wyndaele, 'Inhibitory Effect and Possible Mechanism of Intraurethral Stimulation on Overactive Bladder in Female Rats,' International neurourology journal, vol. 19, p. 151, 2015.
[19] A. Athanasopoulos and F. Cruz, 'The medical treatment of overactive bladder, including current and future treatments,' Expert opinion on pharmacotherapy, vol. 12, pp. 1041-1055, 2011.
[20] D. Griffiths, 'Imaging bladder sensations,' Neurourology and urodynamics, vol. 26, pp. 899-903, 2007.
[21] S. Aboseif, K. Tamaddon, S. Chalfin, S. Freedman, M. Mourad, J. Chang, et al., 'Sacral neuromodulation in functional urinary retention: an effective way to restore voiding,' BJU international, vol. 90, pp. 662-665, 2002.
[22] Y.-T. Lin, C.-H. Lai, T.-S. Kuo, C.-C. Chen, Y.-L. Chen, S.-T. Young, et al., 'Dual-channel neuromodulation of pudendal nerve with closed-loop control strategy to improve bladder functions,' J Med Biol Eng, vol. 34, pp. 82-9, 2014.
[23] M. A. Abd-Elfattah Foda and A. Marmarou, 'A new model of diffuse brain injury in rats: Part II: Morphological characterization,' Journal of neurosurgery, vol. 80, pp. 301-313, 1994.
[24] A. Marmarou, M. A. A.-E. Foda, W. v. d. Brink, J. Campbell, H. Kita, and K. Demetriadou, 'A new model of diffuse brain injury in rats: Part I: Pathophysiology and biomechanics,' Journal of neurosurgery, vol. 80, pp. 291-300, 1994.
[25] T.-H. Hsieh, Y.-Z. Huang, J.-J. J. Chen, A. Rotenberg, Y.-H. Chiang, W.-S. C. Chien, et al., 'Novel use of theta burst cortical electrical stimulation for modulating motor plasticity in rats,' Journal of Medical and Biological Engineering, vol. 35, pp. 62-68, 2015.
[26] B. F. Blok and G. Holstege, 'Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat,' Neuroscience letters, vol. 222, pp. 195-198, 1997.
[27] B. F. Blok and G. Holstege, 'The pontine micturition center in rat receives direct lumbosacral input. An ultrastructural study,' Neuroscience letters, vol. 282, pp. 29-32, 2000.
[28] S. Nishijima, K. Sugaya, M. Miyazato, S. Shimabukuro, M. Morozumi, and Y. Ogawa, 'Activation of the rostral pontine reticular formation increases the spinal glycine level and inhibits bladder contraction in rats,' The Journal of urology, vol. 173, pp. 1812-1816, 2005.
[29] H. Noto, J. Roppolo, W. Steers, and W. De Groat, 'Excitatory and inhibitory influences on bladder activity elicited by electrical stimulation in the pontine micturition center in the rat,' Brain research, vol. 492, pp. 99-115, 1989.
[30] Y. Kimura, Y. Ukai, K. Kimura, K. Sugaya, and O. Nishizawa, 'Inhibitory influence from the nucleus reticularis pontis oralis on the micturition reflex induced by electrical stimulation of the pontine micturition center in cats,' Neuroscience letters, vol. 195, pp. 214-216, 1995.
[31] M. L. Lin, W. T. Lin, R. Y. Huang, T. C. Chen, S. H. Huang, C. H. Chang, et al., 'Pulsed radiofrequency inhibited activation of spinal mitogen‐activated protein kinases and ameliorated early neuropathic pain in rats,' European Journal of Pain, vol. 18, pp. 659-670, 2014.
[32] E. M. Sluijter and F. Imani, 'Evolution and Mode of Action of Pulsed Radiofrequency,' Anesth Pain Med, vol. 2, pp. 139-41, 2013.
[33] K. Van Boxem, M. Van Eerd, T. Brinkhuize, J. Patijn, M. Van Kleef, and J. Van Zundert, 'Radiofrequency and pulsed radiofrequency treatment of chronic pain syndromes: the available evidence,' Pain Practice, vol. 8, pp. 385-393, 2008.
[34] M. E. Sluijter and M. van Kleef, 'Characteristics and mode of action of radiofrequency lesions,' Current Review of Pain, vol. 2, pp. 143-150, 1998.
[35] K. Van Boxem, J. Cheng, J. Patijn, M. Van Kleef, A. Lataster, N. Mekhail, et al., '11. Lumbosacral radicular pain,' Pain Practice, vol. 10, pp. 339-358, 2010.
[36] N. H. Chua, K. C. Vissers, and M. E. Sluijter, 'Pulsed radiofrequency treatment in interventional pain management: mechanisms and potential indications—a review,' Acta neurochirurgica, vol. 153, pp. 763-771, 2011.
[37] S. Erdine, A. Yucel, A. Cimen, S. Aydin, A. Sav, and A. Bilir, 'Effects of pulsed versus conventional radiofrequency current on rabbit dorsal root ganglion morphology,' European journal of pain, vol. 9, pp. 251-256, 2005.
[38] S. Erdine, A. Bilir, E. R. Cosman, and E. R. Cosman Jr, 'Ultrastructural changes in axons following exposure to pulsed radiofrequency fields,' Pain Practice, vol. 9, pp. 407-417, 2009.
[39] M. Protasoni, M. Reguzzoni, S. Sangiorgi, C. Reverberi, E. Borsani, L. F. Rodella, et al., 'Pulsed radiofrequency effects on the lumbar ganglion of the rat dorsal root: a morphological light and transmission electron microscopy study at acute stage,' European Spine Journal, vol. 18, p. 473, 2009.
[40] R. J. Podhajsky, Y. Sekiguchi, S. Kikuchi, and R. R. Myers, 'The histologic effects of pulsed and continuous radiofrequency lesions at 42 C to rat dorsal root ganglion and sciatic nerve,' Spine, vol. 30, pp. 1008-1013, 2005.
[41] Y. Higuchi, B. S. Nashold Jr, M. Sluijter, E. Cosman, and R. D. Pearlstein, 'Exposure of the dorsal root ganglion in rats to pulsed radiofrequency currents activates dorsal horn lamina I and II neurons,' Neurosurgery, vol. 50, pp. 850-856, 2002.
[42] J. Van Zundert, A. J. de Louw, E. A. Joosten, A. G. Kessels, W. Honig, P. J. Dederen, et al., 'Pulsed and continous radiofrequency current adjacent to the cervical dorsal root ganglion of the rat induces late cellular activity in the dorsal horn,' The Journal of the American Society of Anesthesiologists, vol. 102, pp. 125-131, 2005.
[43] S. Hagiwara, H. Iwasaka, N. Takeshima, and T. Noguchi, 'Mechanisms of analgesic action of pulsed radiofrequency on adjuvant‐induced pain in the rat: Roles of descending adrenergic and serotonergic systems,' European journal of pain, vol. 13, pp. 249-252, 2009.
[44] W. Lin, C. H. Chang, C. Cheng, M. C. Chen, Y. Wen, C. Lin, et al., 'Effects of low amplitude pulsed radiofrequency stimulation with different waveform in rats for neuropathic pain,' in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, 2013, pp. 3590-3593.
[45] T.-H. Hsieh, Y.-T. Lin, S.-C. Chen, and C.-W. Peng, 'Chronic pudendal neuromodulation using an implantable microstimulator improves voiding function in diabetic rats,' Journal of neural engineering, vol. 13, p. 046001, 2016.
[46] C.-W. Peng, J.-J. J. Chen, C.-L. Cheng, and W. M. Grill, 'Improved bladder emptying in urinary retention by electrical stimulation of pudendal afferents,' Journal of neural engineering, vol. 5, p. 144, 2008.
[47] N. J. Prindeze, D. Y. Jo, D. W. Paul, R. T. Ortiz, B. C. Carney, R. M. Bullock, et al., 'Regional Neurovascular Inflammation and Apoptosis Are Detected After Electrical Contact Injury,' Journal of Burn Care & Research, vol. 35, pp. 11-20, 2014.
[48] H. Noto, J. Roppolo, W. Steers, and W. De Groat, 'Electrophysiological analysis of the ascending and descending components of the micturition reflex pathway in the rat,' Brain research, vol. 549, pp. 95-105, 1991.
[49] W.-J. Fan, Y.-T. Li, J.-J. J. Chen, S.-C. Chen, Y. S. Lin, Y. R. Kou, et al., 'Sexually dimorphic urethral activity in response to pharmacological activation of 5-HT1A receptors in the rat,' American Journal of Physiology-Renal Physiology, vol. 305, pp. F1332-F1342, 2013.
[50] E. Opisso, A. Borau, and N. Rijkhoff, 'Urethral sphincter EMG-controlled dorsal penile/clitoral nerve stimulation to treat neurogenic detrusor overactivity,' Journal of neural engineering, vol. 8, p. 036001, 2011.
[51] R. A. Appell, 'Clinical efficacy and safety of tolterodine in the treatment of overactive bladder: A pooled analysis,' Urology, vol. 50, pp. 90-96, 12// 1997.
[52] K. J. Gustafson, G. H. Creasey, and W. M. Grill, 'A urethral afferent mediated excitatory bladder reflex exists in humans,' Neuroscience Letters, vol. 360, pp. 9-12, 4/22/ 2004.
[53] S. A. MacDiarmid, K. M. Peters, S. A. Shobeiri, L. S. Wooldridge, E. S. Rovner, F. C. Leong, et al., 'Long-Term Durability of Percutaneous Tibial Nerve Stimulation for the Treatment of Overactive Bladder,' The Journal of Urology, vol. 183, pp. 234-240, 1// 2010.
[54] A. C. Wang, Y.-Y. Wang, and M.-C. Chen, 'Single-blind, randomized trial of pelvic floor muscle training, biofeedback-assisted pelvic floor muscle training, and electrical stimulation in the management of overactive bladder,' Urology, vol. 63, pp. 61-66, 1// 2004.
[55] Y. Matsuta, J. R. Roppolo, W. C. de Groat, and C. Tai, 'Poststimulation inhibition of the micturition reflex induced by tibial nerve stimulation in rats,' Physiological reports, vol. 2, 2014.
[56] R. Munglani, 'The longer term effect of pulsed radiofrequency for neuropathic pain,' Pain, vol. 80, pp. 437-439, 1999.
[57] E. R. Cosman, 'Electric and thermal field effects in tissue around radiofrequency electrodes,' Pain Medicine, vol. 6, pp. 405-424, 2005.
[58] L. Brubaker, 'Electrical stimulation in overactive bladder,' Urology, vol. 55, pp. 17-23, 5// 2000.
[59] J. E. Heavner, M. V. Boswell, and G. B. Racz, 'A comparison of pulsed radiofrequency and continuous radiofrequency on thermocoagulation of egg white in vitro,' Pain physician, vol. 9, pp. 135-137, 2006/04// 2006.
[60] A. Cahana, L. Vutskits, and D. Muller, 'Acute differential modulation of synaptic transmission and cell survival during exposure to pulsed and continuous radiofrequency energy,' The Journal of Pain, vol. 4, pp. 197-202, 5// 2003.
[61] W. C. de Groat, 'A neurologic basis for the overactive bladder,' Urology, vol. 50, pp. 36-52, 12// 1997.
[62] K. Juszczak, A. Ziomber, M. Wyczolkowski, and P. J. Thor, 'Urodynamic effects of the bladder C-fiber afferent activity modulation in chronic model of overactive bladder in rats,' Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, vol. 60, pp. 85-91, 2009/12// 2009.
[63] S.-C. Chen, W. M. Grill, W.-J. Fan, Y. R. Kou, Y. S. Lin, C.-H. Lai, et al., 'Bilateral pudendal afferent stimulation improves bladder emptying in rats with urinary retention,' BJU International, vol. 109, pp. 1051-1058, 2012.
[64] S. Matsuura and J. Downie, 'Effect of anesthetics on reflex micturition in the chronic cannula‐implanted rat,' Neurourology and urodynamics, vol. 19, pp. 87-99, 2000.
[65] J. R. BOSCH, 'Electrical neuromodulatory therapy in female voiding dysfunction,' BJU international, vol. 98, pp. 43-48, 2006.
[66] D. Krasmik, J. Krebs, A. van Ophoven, and J. Pannek, 'Urodynamic results, clinical efficacy, and complication rates of sacral intradural deafferentation and sacral anterior root stimulation in patients with neurogenic lower urinary tract dysfunction resulting from complete spinal cord injury,' Neurourology and urodynamics, vol. 33, pp. 1202-1206, 2014.
[67] G. Brindley, 'The first 500 patients with sacral anterior root stimulator implants: general description,' Spinal Cord, vol. 32, pp. 795-805, 1994.
[68] R. A. Gaunt and A. Prochazka, 'Control of urinary bladder function with devices: successes and failures,' Progress in brain research, vol. 152, pp. 163-194, 2006.
[69] A. M. Lozano and N. Lipsman, 'Probing and regulating dysfunctional circuits using deep brain stimulation,' Neuron, vol. 77, pp. 406-424, 2013.
[70] M. Rosa, G. Giannicola, S. Marceglia, M. Fumagalli, S. Barbieri, and A. Priori, 'Neurophysiology of deep brain stimulation,' Int Rev Neurobiol, vol. 107, pp. 23-55, 2012.
[71] S. Hescham, L. W. Lim, A. Jahanshahi, H. W. Steinbusch, J. Prickaerts, A. Blokland, et al., 'Deep brain stimulation of the forniceal area enhances memory functions in experimental dementia: the role of stimulation parameters,' Brain stimulation, vol. 6, pp. 72-77, 2013.
[72] B. F. Blok, H. De Weerd, and G. Holstege, 'Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M‐region in the cat: A new concept for the organization of the micturition reflex with the periaqueductal gray as central relay,' Journal of Comparative Neurology, vol. 359, pp. 300-309, 1995.
[73] E. Stone, J. Coote, and T. Lovick, 'Effect of electrical vs. chemical deep brain stimulation at midbrain sites on micturition in anaesthetized rats,' Acta Physiologica, vol. 214, pp. 135-145, 2015.
[74] J. Wang, C. Hou, X. Zheng, W. Zhang, A. Chen, and Z. Xu, 'Design and evaluation of a new bladder volume monitor,' Archives of physical medicine and rehabilitation, vol. 90, pp. 1944-1947, 2009.
[75] T. Schlebusch, S. Nienke, S. Leonhardt, and M. Walter, 'Bladder volume estimation from electrical impedance tomography,' Physiological measurement, vol. 35, p. 1813, 2014.
[76] C. Seif, B. Herberger, E. Cherwon, F. Martinez Portillo, M. Molitor, T. Stieglitz, et al., 'Urinary bladder volumetry by means of a single retrosymphysically implantable ultrasound unit,' Neurourology and urodynamics, vol. 23, pp. 680-684, 2004.
[77] A. Mendez, M. Sawan, T. Minagawa, and J.-J. Wyndaele, 'Estimation of bladder volume from afferent neural activity,' IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, pp. 704-715, 2013.
[78] A. Beaumont, A. Marmarou, A. Czigner, M. Yamamoto, K. Demetriadou, T. Shirotani, et al., 'The impact-acceleration model of head injury: injury severity predicts motor and cognitive performance after trauma,' Neurological research, vol. 21, pp. 742-754, 1999.
[79] A. Beaumont, C. Marmarou, and A. Marmarou, 'The effects of human corticotrophin releasing factor on motor and cognitive deficits after impact acceleration injury,' Neurological research, vol. 22, pp. 665-673, 2000.
[80] M. J. Hylin, S. A. Orsi, J. Zhao, K. Bockhorst, A. Perez, A. N. Moore, et al., 'Behavioral and histopathological alterations resulting from mild fluid percussion injury,' Journal of neurotrauma, vol. 30, pp. 702-715, 2013.
[81] S. Ekmark-Lewén, J. Flygt, O. Kiwanuka, B. J. Meyerson, A. Lewén, L. Hillered, et al., 'Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes,' Journal of neuroinflammation, vol. 10, p. 44, 2013.
[82] H.-H. Jiang, O. N. Kokiko-Cochran, K. Li, B. Balog, C.-Y. Lin, M. S. Damaser, et al., 'Bladder dysfunction changes from underactive to overactive after experimental traumatic brain injury,' Experimental neurology, vol. 240, pp. 57-63, 2013.
[83] I. Perkes, I. J. Baguley, M. T. Nott, and D. K. Menon, 'A review of paroxysmal sympathetic hyperactivity after acquired brain injury,' Annals of neurology, vol. 68, pp. 126-135, 2010.
[84] A. A. Rabinstein and E. E. Benarroch, 'Treatment of paroxysmal sympathetic hyperactivity,' Current treatment options in neurology, vol. 10, pp. 151-157, 2008.
[85] J. S. Walter, M. P. Fitzgerald, J. S. Wheeler, and B. Orris, 'Bladder-wall and pelvic-plexus stimulation with model microstimulators: Preliminary observations,' Journal of rehabilitation research and development, vol. 42, p. 251, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59513-
dc.description.abstract脊髓損傷(Spinal Cord Injury, SCI)或腦損傷(Traumatic brain injury, TBI)病人常會伴隨著膀胱過動症或排尿功能失調的現象,若長時間處在此病症下,容易造成腎臟及輸尿管水腫和腎功能病變,腎功能衰竭是此類患者晚期死亡的主要原因,目前仍無任何方便又有效的治療方式,因此電刺激神經調控可能是一種替代的新治療發展方向。
本研究主要分成兩個部分,第一部分為使用實驗室已完成開發之脈衝式射頻電刺激器(射頻頻率500-kHz、脈衝頻率2-Hz、脈衝持續時間80ms、電壓 ±3V),在急性與慢性膀胱過動症的老鼠模型上進行周邊神經 (骨盆神經、會陰神經) 電刺激調控,另一部分使用自動回饋式低頻電刺激器(脈衝頻率50-Hz、脈衝寬度1.82ms、電壓1.5 V),在腦損傷老鼠模型上進行中樞神經電刺激調控,兩部分皆使用膀胱壓力容積檢測法來量化電刺激前後的膀胱功能差異。經由研究結果觀察脈衝射頻電刺激抑制了骨盆神經與會陰神經上的神經訊號傳導,膀胱容積從過動症的65% 顯著上升至110%,膀胱收縮間期從66%回復至 92%,改善的效果可維持4小時以上,有別於以往需要重複電刺激才能夠達到改善的效果有著顯著的提升。在中樞神經電刺激部分,腦損傷鼠的膀胱排尿效率在經過電刺激調控後從22%上升至74%,而我們系統在判斷自動給予電刺激時機的準確率高於90%。
經由研究發現,電刺激神經調控在周邊神經與中樞神經對於不同的病症使用不同的電刺激參數就有其顯著的改善效果,運用能夠暫時阻斷神經傳導的脈衝射頻電刺激於骨盆神經,能夠增加膀胱容積,降低膀胱過動的症狀,而使用低頻電刺激於中樞神經就能夠促進膀胱排空,解決尿液滯留的問題。希望未來在臨床上可作為醫生治療下泌尿道障礙病人的一種新的電刺激模式。
zh_TW
dc.description.abstractSpinal cord injury and traumatic brain injury (TBI) often permanently result in severe voiding dysfunction. Urinary retention and overactive bladder syndrome are often refractory to standard therapies, and most patients require self-catheterization, resulting in frequent urinary tract infections and a reduction of the quality of life. Therefore, this study investigates electrical stimulation neuromodulation as a potentially feasible alternative for the future treatment of bladder disorders.
This research can be separated into 2 parts: The first part involved applying pulsed radiofrequency (PRF) electrical stimulation (frequency = 500 kHz; pulse frequency = 2 Hz; pulse duration = 80 ms; amplitude = ±3 V) neuromodulation on the peripheral (pudendal and pelvic) nerves of rats with overactive bladders, whereas the second part entailed applying automatic closed-loop low-frequency (50 Hz; pulse width = 1.82 ms; amplitude = 1.5 V) deep brain stimulation (DBS) on the central nerves of rats with TBI. According to the first cystometrogram (CMG) recording, acetic acid treatment significantly reduced bladder capacity (BC) and the intercontraction interval (ICI) to 65% and 66% of the corresponding control values, respectively. Subsequently, PRF electrical stimulation of the pelvic nerve inhibited AA-induced detrusor overactivity and significantly increased BC to 102%–110% and ICI to 79%–92%, effects which persisted for at least 4 h. Furthermore, caspase-3 activity demonstrated that PRF did not cause significant neural damage to the stimulated target nerves. In addition, we successfully implemented a closed-loop algorithm for DBS control, and the bladder voiding phase detection accuracy was >90%. Moreover, our system significantly improved voiding efficiency in the TBI rats from 22% to 74%.
The results show that using electrical stimulation with various parameters and in various positions represents a potential treatment for LUT disease. PRF could block nerve conduct, enabling bladder activity to return from overactive to normal levels. In addition, the application of low-frequency DBS could trigger detrusor contractions, which may be a potential mode of treatment for urinary retention.
To conclude, this study is the first step in exploring the effects of electrical stimulation on LUT function. The animal experience gathered from this research can be a basis for developing a newer treatment approach for patients with LUT disease in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:26:13Z (GMT). No. of bitstreams: 1
ntu-106-D01945009-1.pdf: 1482465 bytes, checksum: d4ea5eaf8f244b6e592cae5bcaa805a1 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 1
中文摘要 3
ABSTRACT 4
CONTENTS 6
LIST OF FIGURES 8
LIST OF TABLES 13
Chapter 1 Introduction 14
1.1 Lower urinary tract 14
1.2 Overactive bladder syndrome 15
1.3 The clinic symptom of traumatic brain injury on the bladder functions 15
1.4 Electrical stimulation treatments on lower urinary tract 16
1.5 Neural pathway and hypothesis 18
1.6 The aims of this study 20
Chapter 2 Methodology 21
2.1 Neuromodulation of peripheral nervous system for OAB rat 21
2.1.1 Pulsed-radiofrequency electrical stimulation 21
2.1.2 Animal preparation for PRF intervention 24
2.1.3 PRF intervention 27
2.1.4 Evaluation of temperature change and nerve injury 29
2.1.5 Quantification and analysis of results 30
2.2 Neuromodulation of central nervous system for TBI rat 32
2.2.1 Design of the basic structure of a prototype of the DBS system with a closed-loop control strategy 32
2.2.2 EUS-EMG signal analysis for closed-loop DBS control 35
2.2.3 Verification of the closed-loop control strategy in vivo 38
2.2.4 Induction of traumatic brain injury 38
2.2.5 Brain surgical procedures for the DBS experiment 40
2.2.6 Data and statistical analyses for DBS experiments 43
2.2.7 Brain MRI to assess DBS electrode location and the TBI model 45
Chapter 3 Results 46
3.1 Neuromodulation of peripheral nervous system for OAB rat 46
3.1.1 Effects of AA treatment on CMG 46
3.1.2 Effects of PRF pretreatment of pelvic nerve 49
3.1.3 Effects of PRF pretreatment of pudendal nerve 52
3.1.4 Evaluation of temperature change and nerve injury 55
3.2 Neuromodulation of central nervous system in TBI rat 57
3.2.1 Prototype of the DBS system with a closed-loop control 57
3.2.2 EMG signal process for predicting the bladder status 58
3.2.3 Changes in EUS EMG activity 61
3.2.4 Verification of DBS with the closed-loop control strategy in animal experiments 63
3.2.5 Brain MRI to assess DBS electrode location and the TBI model 65
Chapter 4 Discussion 68
Chapter 5 Conclusions and Prospects 78
REFERENCE 80
dc.language.isoen
dc.subject中樞神經zh_TW
dc.subject脈衝射頻zh_TW
dc.subject電刺激zh_TW
dc.subject會陰神經zh_TW
dc.subject骨盆神經zh_TW
dc.subject膀胱過動症zh_TW
dc.subject腦損傷zh_TW
dc.subject膀胱功能zh_TW
dc.subject尿液滯留zh_TW
dc.subject脈衝射頻zh_TW
dc.subject電刺激zh_TW
dc.subject會陰神經zh_TW
dc.subject骨盆神經zh_TW
dc.subject膀胱過動症zh_TW
dc.subject腦損傷zh_TW
dc.subject膀胱功能zh_TW
dc.subject尿液滯留zh_TW
dc.subject中樞神經zh_TW
dc.subjectbladder functionen
dc.subjectpulsed radiofrequencyen
dc.subjectcentral nervesen
dc.subjecturinary retentionen
dc.subjectpulsed radiofrequencyen
dc.subjectelectrical stimulationen
dc.subjectpelvic nerveen
dc.subjectpudendal nerveen
dc.subjectoveractive bladder syndromeen
dc.subjecttraumatic brain injuryen
dc.subjectbladder functionen
dc.subjecturinary retentionen
dc.subjectcentral nervesen
dc.subjectelectrical stimulationen
dc.subjectpelvic nerveen
dc.subjectpudendal nerveen
dc.subjectoveractive bladder syndromeen
dc.subjecttraumatic brain injuryen
dc.title電刺激神經調控對膀胱功能的影響zh_TW
dc.titleEffects of the Electrical Stimulation Neuromodulation of Bladder Functionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor彭志維(Chih-Wei Peng),林致廷(Chih-Ting Lin)
dc.contributor.oralexamcommittee郭柏齡(Po-Ling Kuo),邱逸淳
dc.subject.keyword脈衝射頻,電刺激,會陰神經,骨盆神經,膀胱過動症,腦損傷,膀胱功能,尿液滯留,中樞神經,zh_TW
dc.subject.keywordpulsed radiofrequency,electrical stimulation,pelvic nerve,pudendal nerve,overactive bladder syndrome,traumatic brain injury,bladder function,urinary retention,central nerves,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201700820
dc.rights.note有償授權
dc.date.accepted2017-06-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved