Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59490
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorYu-Kuang Chiuen
dc.contributor.author邱宇光zh_TW
dc.date.accessioned2021-06-16T09:25:26Z-
dc.date.available2019-07-20
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-13
dc.identifier.citation[1] World Health Organization, 'Universal eye health - A global action plan,' pp. 1–5, Mar. 2013.
[2] 中華民國衛生福利部國民健康署, '建議 3C 產品加註警語行政指導原則,'. [Online].Available: http://www.hpa.gov.tw/BHPNet/Web/News/News.aspx?No=201501070001. Accessed: Jun. 24, 2016.
[3] Z. Ma, 'Practical approach for dispersion compensation in spectral-domain optical coherence tomography,' Optical Engineering, vol. 51, no. 6, p. 063203, Jun. 2012.
[4] E. A. Swanson et al., 'In vivo retinal imaging by optical coherence tomography,' Optics Letters, vol. 18, no. 21, p. 1864, Nov. 1993.
[5] W. DREXLER and J. FUJIMOTO, 'State-of-the-art retinal optical coherence tomography,' Progress in Retinal and Eye Research, vol. 27, no. 1, pp. 45–88, Jan. 2008.
[6] T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, 'In vivo Fourier-domain full-field OCT of the human retina with 15 million a-lines/s,' Optics Letters, vol. 35, no. 20, p. 3432, Oct. 2010.
[7] 鄭乃嘉, “結合光學同調斷層掃描與共焦螢光顯微術之研究.” 國立台灣大學光電工程研究所, 2010.
[8] M. V. Klein and T. E. Furtak, Optics: Wiley New York, 1990.
[9] 陳上慈, “Ti:Al2O3 Crystal-Fiber-Based Parallel Optical Coherence Tomography.” 國立台灣大學光電工程研究所, 2014.
[10] P. Xiao, M. Fink, and A. C. Boccara, “Transmission glass-like aberrations correction for full-field OCT imaging,” Imaging and Applied Optics, pp. 3–4, Jun. 2015.
[11] 吳東憶, “高解析且高深度 Mirau 全域式同調斷層掃描之活體皮膚量測.” 國立台灣大學光電工程研究所, 2015.
[12] C.-C. Tsai et al., “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomedical Optics Express, vol. 5, no. 9, p. 3001, Aug. 2014.
[13] “The Rayleigh criterion,”. [Online]. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/raylei.html. Accessed: Jun. 2, 2016.
[14] A. Yariv and P. Yeh, Photonics: Optical electronics in modern communications, 6th ed. New York: Oxford University Press, 2006.
[15] W. Drexler, Optical coherence tomography: Technology and applications. Springer-Verlag New York, 2008.
[16] “Optical resolution,” in Wikipedia, Wikimedia Foundation, 2016. [Online]. Available: https://en.wikipedia.org/wiki/Optical_resolution#Sensor_resolution_.28spatial.29. Accessed: Jun. 16, 2016.
[17] P. Media, “Camera resolution: Combining detector and optics performance,” Photonics.com, 2009. [Online]. Available:
http://www.photonics.com/EDU/Handbook.aspx?AID=29926. Accessed: Jun. 16, 2016.
[18] G. Boulon, L. Laversenne, C. Goutaudier, Y. Guyot, and M. T. Cohen-Adad, “Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers,” Journal of Luminescence, vol. 102-103, pp. 417–425, May 2003.
[19] C. A. Burrus and J. Stone, “Single−crystal fiber optical devices: A Nd: YAG fiber laser,” Applied Physics Letters, vol. 26, no. 6, p. 318, 1975.
[20] E. P. Widmaier, H. Raff, and K. T. Strang, Vander’s human physiology: The mechanisms of body function, 13th ed. New York: McGraw Hill Higher Education, 2014.
[21] P. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, pp. 125–133, 1986.
[22] P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” Journal of the Optical Society of America B, vol. 3, pp. 134–139, 1986.
[23] “The rat’s eyes,” 2003. [Online]. Available: http://www.ratbehavior.org/Eyes.htm. Accessed: May 25, 2016.
[24] R. H. Douglas and G. Jeffery, “The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals,” Proceedings of the Royal Society B: Biological Sciences, vol. 281, no. 1780, pp. 20132995–20132995, Feb. 2014.
[25] A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Research, vol. 23, no. 12, pp. 1351–1363, Jan. 1983.
[26] D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” Journal of the Optical Society of America A, vol. 22, no. 1, p. 29, Jan. 2005.
[27] 王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測.” 國立台灣大學光電工程研究所, 2011.
[28] Zeiss Objective EC Plan-Neofluar 40x/0.75 transmittance. Available: https://www.micro-shop.zeiss.com/?s=191483241fb3b94&l=en&p=us&f=o&a=v&m=s&id=440350-9903-000&o=.
[29] Y. Geng, et al., “In vivo imaging of microscopic structures in the rat retina,” Investigative Opthalmology & Visual Science, vol. 50, no. 12, p. 5872, Dec. 2009.
[30] R. Paschotta, “Encyclopedia of laser physics and technology - chromatic dispersion, group velocity, group delay, GDD, anomalous, normal, higher order,” RP Photonics Consulting GmbH, 2016.
[31] A. K. Ghatak and K. Thyagarajan, An introduction to fiber optics. United Kingdom: Cambridge University Press, 1998.
[32] G. D. Reid and K. Wynne, “Ultrafast laser technology and spectroscopy,” Applications, Theory and Instrumentation, Oct. 2000.
[33] A. G. Van Engen, S. A. Diddams, and T. S. Clement, “Dispersion measurements of water with white-light interferometry,” Applied Optics, vol. 37, no. 24, p. 5679, Aug. 1998.
[34] E. G. Neumann, Single mode fibers: Fundamentals. Springer, 1988.
[35] T. R. Hillman and D. D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 13, no. 6, p. 1860, 2005.
[36] T. Liu and J. P. Sullivan, Pressure and temperature sensitive paints. Germany: Springer-Verlag Berlin and Heidelberg GmbH & Co. K, 2004, p. 71.
[37] W. J. Choi, “Measurement of retinal vascular permeability in a rat model using spectroscopic optical coherence tomography,” Thesis, Massachusetts Institute of Technology, 2011.
[38] 廖柏睿, “摻鉻釔鋁石榴石光源應用於光學低同調掃描中解析度與訊雜比之研究.” 國立台灣大學光電工程研究所, 2008.
[39] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,” IEEE Reviews in Biomedical Engineering, vol. 3, pp. 169–208, 2010.
[40] K. Probst, P. J. DeLint, and A. Rothova, “Photoreceptor function in eyes with Macular edema,” Investigative Ophthalmology & Visual Science, vol. 41, no. 12, pp. 4048–4053, Nov. 2000.
[41] M. Hill 2016, “Vision - retina development,” 2016. [Online]. Available: https://embryology.med.unsw.edu.au/embryology/index.php/Vision_-_Retina_Development. Accessed: Jul. 16, 2016.
[42] M. Ruggeri et al., “In vivo Three-Dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Investigative Opthalmology & Visual Science, vol. 48, no. 4, p. 1808, Apr. 2007.
[43] J. J. Steinle and P. G. Smith, “Role of adrenergic receptors in vascular remodelling of the rat choroid,” British Journal of Pharmacology, vol. 136, no. 5, pp. 730–734, Jul. 2002.
[44] F. Toyoda, Y. Tanaka, M. Shimmura, N. Kinoshita, H. Takano, and A. Kakehashi, “Diabetic retinal and Choroidal edema in SDT rats,” Journal of Diabetes Research, vol. 2016, pp. 1–6, 2016.
[45] J. Chhablani, I. Y. Wong, and I. Kozak, “Choroidal imaging: A review,” Saudi Journal of Ophthalmology, vol. 28, no. 2, pp. 123–128, Apr. 2014.
[46] V. J. Srinivasan et al., “Noninvasive volumetric imaging and Morphometry of the rodent retina with high-speed, Ultrahigh-Resolution optical coherence tomography,” Investigative Opthalmology & Visual Science, vol. 47, no. 12, p. 5522, Dec. 2006.
[47] M. R. Hee, “Optical coherence tomography of the human retina,” Archives of Ophthalmology, vol. 113, no. 3, p. 325, Mar. 1995.
[48] P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: Emerging clinical applications,” Optometry and Vision Science, vol. 87, no. 12, pp. 930–941, Dec. 2010.
[49] R. F. Spaide and C. A. Curcio, “Anatomical correlates to the bands seen in the outer retina by optical coherence tomography,” Retina, vol. 31, no. 8, pp. 1609–1619, Sep. 2011.
[50] K. L. Fitch and M. J. Nadakavukaren, “Age-related changes in the corneal endothelium of the mouse,” Experimental Gerontology, vol. 21, no. 1, pp. 31–35, Jan. 1986.
[51] J. D. Zieske, “Corneal development associated with eyelid opening,” The International Journal of Developmental Biology, vol. 48, no. 8-9, pp. 903–911, 2004.
[52] D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” Journal of Cataract & Refractive Surgery, vol. 37, no. 3, pp. 588–598, Mar. 2011.
[53] H. S. Dua, A. Miri, T. Alomar, A. M. Yeung, and D. G. Said, “The role of Limbal stem cells in corneal Epithelial maintenance,” Ophthalmology, vol. 116, no. 5, pp. 856–863, May 2009.
[54] R. A. Laing, M. M. Sandstrom, A. R. Berrospi, and H. M. Leibowitz, “Changes in the corneal endothelium as a function of age,” Experimental Eye Research, vol. 22, no. 6, pp. 587–594, Jun. 1976.
[55] T. M. S. Greiling and J. I. Clark, “The transparent lens and cornea in the mouse and zebra fish eye,” Seminars in Cell & Developmental Biology, vol. 19, no. 2, pp. 94–99, Apr. 2008.
[56] L. Bredow, J. Schwartzkopff, and T. Reinhard, “Regeneration of corneal endothelial cells following keratoplasty in rats with bullous keratopathy,” vol. 20, May 2014.
[57] L. Nelson, D. Hodge, and W. Bourne, “Central corneal endothelial cell changes over a ten-year period,” American Journal of Ophthalmology, vol. 124, no. 2, pp. 273–274, Aug. 1997.
[58] R. S. Wilson and M. J. Roper-Hall, “Effect of age on the endothelial cell count in the normal eye,” British Journal of Ophthalmology, vol. 66, no. 8, pp. 513–515, Aug. 1982.
[59] M.-M. Gagnon, H. M. Boisjoly, I. Brunette, M. Charest, and M. Amyot, “Corneal endothelial cell density in glaucoma,” Cornea, vol. 16, no. 3, pp. 314–318, May 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59490-
dc.description.abstract由於眼睛疾病的早期診斷治療是預防惡化的首要方法,近年光學同調斷層掃描(Optical coherence tomography; OCT)作為重要的生物影像工具,已被普遍應用於眼科臨床診斷,協助疾病確診及術後復原追蹤。全域式光學同調斷層掃描系統(Full-field optical coherence tomography; FF-OCT)之架構簡單,且掃描速度不亞於其他快速掃描的OCT技術,如掃頻雷射OCT (Sweep source OCT)。
本論文中展示兩套FF-OCT系統,皆使用實驗室自行生長的摻鈦藍寶石(Ti:sapphire)晶體光纖放大自發輻(Amplified spontaneous emission; ASE)作為光源。第一套系統為架設Michelson-based FF-OCT,是文獻中首套應用於活體大鼠視網膜及脈絡膜量測的FF-OCT系統。其光源中心波長為 769.7 nm,頻寬為 163.5 nm。由於OCT 系統之縱向解析度與光源的中心波長以及頻寬有關,上述的光源特性使OCT系統在空氣中縱向解析度達到2.1 μm,在視網膜組之中為 1.58 μm。此系統呈現了5層視網膜影像、視網膜厚度(~250 μm)、RPE層細胞大小(15-20 μm)、清晰的脈絡膜結構及厚度(20-42 μm) ,皆符合文獻記載。
第二套系統為應用實驗室現有的Mirau-based FF-OCT系統進行活體大鼠角膜量測。其光源中心波長為 769.9 nm,頻寬為 163.8 nm,使系統縱向解析度達到1.67 μm,在角膜組織中為1.21 μm,而橫向解析度為1.12 μm。可得到清晰且完整的4層角膜結構及厚度(~160 μm),並經影像處理及分析後,能辨別表皮細胞層厚度(20-30 μm)及細胞位置、內皮細胞層厚度(~1.4 μm)及細胞密度(2,998-3,217 μm),並且皆與文獻記載之數值相符。
本論文展現FF-OCT系統應用於活體眼睛量測之潛力,可協助學術研究,進一步開發更期能應用於人體眼睛疾病診斷。
zh_TW
dc.description.abstractEarly stage diagnosis has been shown to be an efficient way to prevent the deterioration of eye diseases. In recent years, optical coherence tomography (OCT), as an important clinical imaging modality, has been widely used in clinical diagnosis in ophthalmology, helping follow the diseases progression and monitor response to therapy. Full-field optical coherence tomography (FF-OCT), a branch of OCT, has a simple setup, and its scanning speed is comparable to other fast-scanning OCT configuration, like sweep source OCT.
In this work, two FF-OCT systems which both adopted amplified spontaneous emission (ASE) generated from the homemade Ti:sapphire crystal fiber as light source were demonstrated. The first system of this work is a Michelson-based FF-OCT system, which is the first FF-OCT system applied to in-vivo rat retinal and choroidal measurements in literature. The central wavelength of the light source of this system is 769.7 nm, and the 3-dB bandwidth is 163.5 nm, as a result, the system has an axial resolution of 2.1 μm in air and 1.58 μm in retinal tissue. The system revealed 5 layers of retinal image and the exquisite structure of choroid. It was found that the retinal thickness is about 250 μm, the cell size of retinal pigment epithelium is between 15 to 20 μm, and choroidal thickness is between 20 to 42 μm, and these results are consistent with these in literature.
The second system employs a homemade Mirau-based FF-OCT to conduct in-vivo rat cornea measurement. The central wavelength of the system light source of is 769.9 nm, and the 3-dB bandwidth is 163.8 nm, giving the system 1.67-μm axial resolution in air and 1.21 μm in corneal tissue, and the lateral resolution is 1.12 μm. With the system, a clear corneal image with 4-layer structure can be obtained. After image processing and analysis, the corneal thickness (~160 μm), the thickness of corneal epithelium (20-30 μm), the location of the cell, the thickness of corneal endothelium (~1.4 μm) and endothelial cell density (2,998-3,217 μm) can also be calculated, and the results are consistent with these in literature.
This work shows the potential of applying FF-OCT to in-vivo eye measurement. These FF-OCT systems can help academic research in current stage, and with further development, they are expected to be introduced to human trials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:25:26Z (GMT). No. of bitstreams: 1
ntu-106-R03941069-1.pdf: 6469745 bytes, checksum: 00c57c380076ff0dc19190fe9d5af1f0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1背景簡介 1
1.2研究動機 2
1.3本文貢獻 2
第二章 光學同調斷層掃描術之理論及眼睛結構簡介 4
2.1光學低同調干涉術 4
2.2全域式光學同調斷層掃描術 8
2.2.1 Michelson-based 系統簡介 9
2.2.2 Mirau-based系統簡介 10
2.2.3影像處理 11
2.2.4系統解析度 14
2.3摻鈦藍寶石晶體(Ti:sapphire)光纖寬頻光源 18
2.3.1晶體光纖製備 18
2.3.2摻鈦藍寶石晶體光纖放大自發輻射 19
2.4眼睛結構簡介 22
第三章 Michelson-based全域式光學同調斷層掃描系統設計與架設 27
3.1 系統研製 27
3.2色散補償理論及機制 35
3.3去除雜散光之系統設計 41
3.4 Zemax光學模擬 44
3.4.1序列式光線追跡模式 (Sequential mode) 44
3.4.2非序列式光線追跡模式 (Non-sequential mode) 47
3.5系統測試及特性分析 49
第四章 以Michelson-based系統進行活體大鼠視網膜、脈絡膜量測及分析 54
4.1大鼠視網膜及脈絡膜簡介及量測目標 54
4.2眼底鏡架設及量測結果 56
4.3大鼠視網膜量測結果及分析 57
4.4大鼠脈絡膜量測結果及分析 65
第五章 以Mirau-based系統進行活體大鼠角膜量測及分析 67
5.1大鼠角膜簡介及量測目標 67
5.2大鼠角膜影像分層 69
5.3大鼠角膜表皮細胞層量測結果及分析 71
5.4大鼠角膜內皮細胞層量測結果及分析 73
第六章 結論及未來展望 77
附錄 大鼠眼睛量測系統使用之LabVIEW程式簡介 79
參考資料 84
dc.language.isozh-TW
dc.title供活體大鼠眼睛特性分析之全域式光學同調斷層掃描研究zh_TW
dc.titleStudy of Full-field Optical Coherence Tomography for In-vivo Rat Eye Characterizationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊長豪(Chang-Hao Yang),陳偉勵(Wei-Li Chen),許?文(Li-Wen Hsu)
dc.subject.keyword全域式光學同調斷層掃描,摻鈦藍寶石,視網膜,脈絡膜,角膜,活體眼睛量測,zh_TW
dc.subject.keywordfull-field optical coherence tomography,Ti:sapphire,retina,choroid,cornea,in-vivo eye measurement,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201700803
dc.rights.note有償授權
dc.date.accepted2017-06-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved