Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓仁毓
dc.contributor.authorHan-Chen Kuanen
dc.contributor.author關涵蓁zh_TW
dc.date.accessioned2021-06-16T09:24:56Z-
dc.date.available2022-07-20
dc.date.copyright2017-07-20
dc.date.issued2016
dc.date.submitted2017-06-16
dc.identifier.citationAckermann, S., Angrisano, A., Del Pizzo, S., Gaglione, S., Gioia, C., & Troisi, S., 2013. Digital surface models for GNSS mission planning in critical environments. Journal of Surveying Engineering, 140(2).
Alcay, S., & Yigit, C. O., 2016. Network based performance of GPS-only and combined GPS/GLONASS positioning under different sky view conditions. Acta Geodaetica et Geophysica, 1-12.
Alkan, R. M., İlçi, V., Ozulu, İ. M., & Saka, M. H., 2015. A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas. Measurement, 69, 1-8.
Angrisano, A., Gaglione, S., Pacifico, A., & Vultaggio, M., 2009. Multi-Constellation System as Augmentation to GPS Performance in Difficult Environment or Critical Applications. Proceedings ENC-GNSS, 9.
Angrisano, A., Gaglione, S., & Gioia, C., 2013. Performance assessment of GPS/GLONASS single point positioning in an urban environment. Acta Geodaetica et Geophysica, 48(2), 149-161.
Baselga, S., 2011. Second order design of geodetic networks by the simulated annealing method. Journal of Surveying Engineering, 137(4):167-173.
Bennitt, G. V., & Jupp, A., 2012. Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models. Monthly Weather Review, 140(8): 2706-2719.
Berné, J. L., & Baselga, S., 2004. First-order design of geodetic networks using the simulated annealing method. Journal of Geodesy, 78(1-2), 47-54.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., & Ware, R. H., 1994. GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of applied meteorology, 33(3): 379-386.
Cai, J., Wang, J., Wu, J., Hu, C., Grafarend, E., & Chen, J., 2008. Horizontal deformation rate analysis based on multiepoch GPS measurements in Shanghai. Journal of Surveying Engineering, 134(4):132-137.
Chen, H. C., Huang, Y. S., Chiang, K. W., Yang, M., & Rau, R. J., 2009. The performance comparison between GPS and BeiDou‐2/compass: A perspective from Asia. Journal of the Chinese Institute of Engineers, 32(5), 679-689.
China Satellite Navigation Office , 2013. BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal, Version 2.0.
Doma, M. I., 2013. Particle swarm optimization in comparison with classical optimization for GPS network design. Journal of Geodetic Science, 3(4): 250-257.
Doma, M. I., & Sedeek, A. A., 2014. Comparison of PSO, GAs and analytical techniques in second-order design of deformation monitoring networks. Journal of Applied Geodesy, 8(1), 21-30.
Dwivedi, R., & Dikshit, O., 2013. A comparison of particle swarm optimization (PSO) and genetic algorithm (GA) in second order design (SOD) of GPS networks. Journal of Applied Geodesy, 7(2), 135-146.
Eberhart, R. C., & Shi, Y., 2000. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the Congress on Evolutionary Computating, pp. 84–88.
European Union, 2015. European GNSS (Galileo) open service: Signal in space interface control document. Luxembourg: Publications Office of the European Union.
Gere, J. M., & Timoshenko, S. P., 1991. Mechanics of Materials, PWS-KENT Publishing Company, p.378-394.
Grafarend, E. W., 1974. Optimization of geodetic networks. Bollettino di Geodesiae Science Affini, 33(4):351-406.
Groves, P. D., 2011. Shadow matching: A new GNSS positioning technique for urban canyons. Journal of Navigation, 64(03), 417-430.
Han, J. Y., 2006. Time-variant transformations for modern terrestrial reference frames. Ph.D. Dissertation, Purdue University, West Lafayette, Indiana, U.S.A.
Han, J. Y., Guo, J., & Chuang, J. Y., 2015. Efficient obstruction analysis for GNSS relative positioning of terrestrial mobile mapping system. Survey Review, 47(342), 153-162.
Han, J. Y., Guo, J., & Zheng, Z. Y., 2011. Sensitivity Analysis for the Principal Strain Parameters of a Deformation Monitoring Network. Journal of Surveying Engineering, 138(3), 109-116.
Han, J. Y., Van Gelder, B. H. W., & Soler, T., 2007. On covariance propagation of eigenparameters of symmetric nD tensors. Geophysical Journal International, 170(2), 503-510.
Han, J. Y., & Li, P. H., 2010. Utilizing 3-D topographical information for the quality assessment of a satellite surveying. Applied Geomatics, 2(1):21-32.
Hollenstein, C., Müller, M. D., Geiger, A., & Kahle, H. G., 2008. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics, 449(1):17-40.
Kuang, S. L., 1991. Optimization and design of deformations mentoring schemes, Ph.D. dissertation, Tech. Rep. 157, Dept. of Surveying Engineering, Univ. of New Brunswick, Fredericton, NB, Canada.
Leick, A., 2004. GPS satellite surveying (3 ed.). John Wiley & Sons, New York.
Malet, J. P., Maquaire, O., & Calais, E., 2002. The use of Global Positioning System techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1):33-54.
Mehrabi, H., & Voosoghi, B., 2014. Optimal observational planning of local GPS networks: assessing an analytical method. Journal of Geodetic Science, 4(1).
Mikhail, E. M., & Ackermann, F. E., 1976. Observations and least Squares. IEP—A Dun-Donnelley Publisher, New York.
Mittermayer, E., 1972. A generalisation of the least-squares method for the adjustment of free networks. Bulletin Géodésique, 104(1), 139-157.
Rizos, C., 2008. Multi‐constellation GNSS/RNSS from the perspective of high accuracy users in Australia. Journal of Spatial Science, 53(2), 29-63.
Russian Institute of Space Device Engineering, 2008. Global Navigation Satellite System Interface Control Documen, edition 5.1, Moscow, Russia.
Saleh, H. A., & Chelouah, R., 2004. The design of the global navigation satellite system surveying networks using genetic algorithms. Engineering Applications of Artificial Intelligence, 17(1), 111-122.
Shi, Y., & Eberhart, R., 1998. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation, 4-9 May, Anchorage, Alaska.
Taylor, G., Li, J., Kidner, D., Brunsdon, C., & Ware, M., 2007. Modelling and prediction of GPS availability with digital photogrammetry and LiDAR. International Journal of Geographical Information Science, 21(1), 1-20.
Ueno, M., Itani, K., & Langley, R. B., 2003. Real-time GPS landslide monitoring under poor satellite visibility. Poster presented at the EGS-AGU-EUG Joint Assembly, Nice, Abstract published in Geophysical Research Abstracts, 5, 01931.
Vecchio, F. J., & Collins, M. P., 1986. The modified compression-field theory for reinforced concrete elements subjected to shear. In ACI Journal Proceedings , Vol. 83(2).
Yetkin, M., Inal, C., & Yigit, C. O., 2011. The optimal design of baseline configuration in GPS networks by using the particle swarm optimisation algorithm. Survey Review, 43(323), 700-712.
GPS Lab,2013。2012年8月至2013年8月全台累積應變圖,台灣地震科學中心地殼變形服務系統。網址:http://gps.earth.sinica.edu.tw/(最後瀏覽日:2016 年05月17 日)
中央地質調查所,2011。觀測地變趨勢,掌握活動斷層。網址:http://www.moeacgs.gov.tw/info/view.jsp?info=478(最後瀏覽日:2016 年04 月12 日)
鄭則元,2009。二維測邊網應變主參數靈敏度分析,國立台灣大學土木工程學研究所,碩士論文,台北市。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59475-
dc.description.abstract全球衛星導航系統(Global Navigation Satellite System,GNSS)已被廣泛應用於地表監測任務上,而網形布設與規劃為監測任務最基礎的工作,然而在多星系發展下,現有變形監測網設計方法並未完整考慮多星系之效益,大多仍採單一星系進行網形設計且缺乏系統化及全面性的優化策略。因此本研究針對多星系地表變形監測網進行最佳化設計,考量監測站真實地形遮蔽效應之分析方法,結合最小可偵測應變量指標做為網形優化設計依據,運用粒子群演算法建置自動最佳化變形監測網。本研究以南迴鐵路監測網資料進行實驗測試,成果顯示應用多星系GNSS衛星資料可使監測點位精度及網形應變偵測靈敏度提升至少30%。此外,藉由粒子群演算法自動最適點位搜尋,可改善網形幾何並使網形整體應變偵測能力增加比率達92.5%。透過本研究建構之變形監測網最佳化策略,能有效促進多星系GNSS衛星於地表變形監測上具更高之應用效益。zh_TW
dc.description.abstractGlobal navigation satellite system (GNSS) has been used worldwide for ground deformation monitoring tasks. With the rapid advances in GNSS, the benefits of integrated multi-constellation GNSS are not considered in the existing network design. Additionally, the traditional method applied in optimization of network design are inefficient. In this study, the multi-constellation GNSS were applied and terrestrial obstruction effects were considered to evaluate the quality of a network positioning result. Then, the minimum detectable principal strain index was introduced to be the optimal design criteria. Finally, the particle swarm optimization (PSO) method was adopted for an automatic design of deformation monitoring network. The results revealed 30% improvement in the accuracy of positioning and deformation analysis when multi-constellation GNSS systems were applied. Moreover, an automated optimization method of the multi-constellation GNSS monitoring network configuration was achieved by PSO method. Through the optimization of the monitoring network, the minimum detectable principal strain index was improved up to 92.5%. Consequently, the profit of introducing the multi-constellation GNSS techniques in the ground deformation monitoring tasks can be maximized with the proposed approach.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:24:56Z (GMT). No. of bitstreams: 1
ntu-105-R03521115-1.pdf: 2901677 bytes, checksum: fa6bf9464b70700fc6819d65474720bc (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 4
1.3 研究策略 5
1.4 論文架構 6
第二章 文獻回顧 7
2.1 GNSS衛星發展與應用 7
2.2 多星系GNSS衛星於遮蔽區域之效益 10
2.3 衛星訊號遮蔽範圍分析 12
2.4 監測網形最佳化 14
2.5 小結 17
第三章 研究方法 18
3.1 多星系GNSS定位品質評估 18
3.1.1 多星系衛星軌道計算 18
3.1.2 地形效應可視性分析 22
3.1.3 相對定位原理及定位品質 24
3.1.4 基線自由網平差 28
3.2 地表變形偵測能力評估 29
3.2.1 地表變形分析模式 30
3.2.2 主應變分析 33
3.2.3 主應變參數靈敏度指標 35
3.3 粒子群演算法點位搜尋方法 36
3.4 多星系地表變形監測網自動建置策略 38
第四章 數值實驗 40
4.1 實驗情境分析 40
4.1.1 實驗區域 41
4.1.2 實驗資料 41
4.2 初始地表變形監測網分析 42
4.2.1 三維地形遮蔽效應分析成果 42
4.2.2 單星系與多星系定位品質及應變分析成果 43
4.3 地表變形監測網最佳化規劃 47
4.3.1 搜尋參數於最佳化成果之影響 48
4.3.2 監測網最佳化規劃成果 55
4.4 實驗小結 57
第五章 結論與建議 59
5.1 結論 59
5.2 建議與未來工作 61
參考文獻 62
dc.language.isozh-TW
dc.title多星系GNSS地表變形監測網最佳化設計zh_TW
dc.titleAn Optimized Design of Multi-Constellation GNSS Deformation Monitoring Networken
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee高書屏,甯方璽,黃文正
dc.subject.keyword全球衛星導航系統,應變分析,網形最佳化,粒子群演算法,zh_TW
dc.subject.keywordGlobal navigation satellite system (GNSS),Strain Analysis,Network optimization,Particle swarm optimization,en
dc.relation.page65
dc.identifier.doi10.6342/NTU201700966
dc.rights.note有償授權
dc.date.accepted2017-06-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved