請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌(Po-Huang Liang) | |
| dc.contributor.author | Chun-Hsu Chen | en |
| dc.contributor.author | 陳俊旭 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:24:35Z | - |
| dc.date.available | 2027-06-04 | |
| dc.date.copyright | 2017-07-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-19 | |
| dc.identifier.citation | 1. Fujita, Y., Ito, J., Ueda, M., Fukuda, H., and Kondo, A. (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 70(2), 1207–1212.
2. Demain, A.L., Newcomb M., and Wu, J.H. (2005) Cellulase, Clostridia, and Ethanol. Microbiol Mol Biol Rev, 69(1), 124–154. 3. Kumar, P., Barrett, D.M., Delwiche, M.J., and Stroeve, P. (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res, 48, 3713–3729. 4. Wyman, C.E. (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ, 24, 189–226. 5. Jørgensen, H., Kristensen, J.B., and Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Bioref, 1(2), 119–134. 6. Wiselogel, A., Tyson, S., and Johnson, D. (1996) Biomass feedstock resources and composition. Handbook on Bioethanol: Production and Utilization, ed. by Wyman CE.Taylor & Francis, Washington, pp. 105–118. 7. Dodd, D., and Cann, I.K. (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy, 1(1), 2–17. 8. Pérez, J., Muñoz-Dorado, J., de la Rubia, T., and Martínez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5, 53–63. 9. Kuhad, R.C., Singh, A., and Eriksson, K.E. (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol, 57, 45–125. 10. Fengel, D., and Wegener, G. (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, New York, p 613. 11. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res, 37, D233–D238. 12. Chen, Z., Friedland, G.D., Pereira, J.H., Reveco, S.A., Chan, R., Park, J.I., Thelen, M.P., Adams, P.D., Arkin, A.P., Keasling, J.D., Blanch, H.W., Simmons, B.A., Sale, K.L., Chivian, D., and Chhabra, S.R. (2012) Tracing determinants of dual substrate specificity in glycoside hydrolase family 5. J Biol Chem, 287(30), 25335–25343. 13. McMillan, J. D. (1994) Pretreatment of lignocellulosic biomass. In Enzymatic Conversion of Biomass for Fuels Production. Himmel, M. E., Baker, J. O., Overend, R. P., Eds.; American Chemical Society: Washington, DC, pp. 292–324. 14. Broder, J. D., Barrier, J. W., Lee, K. P., and Bulls, M. M. (1995) Biofuels system economics. World Resour Rev, 7(4), 560–569. 15. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 96, 673–686. 16. Jeffries, T.W., and Jin, Y.S. (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol, 63, 495–509. 17. Xu, Q., Resch, M.G., Podkaminer, K., Yang, S., Baker, J.O., Donohoe, B.S., Wilson, C., Klingeman, D.M., Olson, D.G., Decker, S.R., Giannone, R.J., Hettich, R.L., Brown, S.D., Lynd, L.R., Bayer, E.A., Himmel, M.E., Bomble, Y.J. (2016) Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Science Advances, 2(2):e1501254. 18. Lee, H.L., Chang, C.K., Teng, K.H., and Liang, P.H. (2011) Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability. Bioresour Technol, 102, 3973–3976. 19. Yuan, S.F,, Wu, T.H., Lee, H.L., Hsieh, H.Y., Lin, W.L., Yang, B., Chang, C.K., Li, Q., Gao, J., Huang, C.H., Ho, M.C., Guo, R.T., Liang, P.H. (2015) Biochemical characterization and structural analysis of a bifunctional cellulase/xylanase from Clostridium thermocellum. J. Biol. Chem. 290, 5739–5748. 20. Yagüe, E., Béguin, P., and Aubert, J.P. (1990) Nucleotide sequence and deletion analysis of the cellulase-encoding gene celH of Clostridium thermocellum. Gene, 89, 61–67. 21. Zhang, Y.H., Cui, J., Lynd, L.R., and Kuang, L,R. (2006) A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 7, 644–648. 22. Lee, H.L., Chang, C.K., Jeng, W.Y., Wang, A.H., Liang, P.H. (2012) Mutations in the substrate entrance region of beta-glucosidase from Trichoderma reesei improve enzyme activity and thermostability. Prot. Eng. Des. Sel. 25, 733–740. 23. Wang, H.M., Shih, Y.P., Hu, S.M., Lo, W.T., Lin, H.M., Ding, S.S., Liao, H.C., Liang, P.H. (2009) Parallel gene cloning and protein production in multiple expression systems. Biotechnol. Prog. 25, 1582–1586. 24. Bao, L., Huang, Q., Chang, L., Sun, Q., Zhou, J., Lu, H. (2012) Cloning and characterization of two β-glucosidase/xylosidase enzymes from yak rumen metagenome. Appl. Biochem. Biotechnol. 166,72–86. 25. Bradford, M.M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72, 248–254. 26. Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428. 27. Sierra, R., Granda, C.B., Holtzapple, M.T. (2009) Lime pretreatment. Methods Mol. Biol. 581, 115–124. 28. Zhang, Z., Xie, J., Zhang, F., Linhardt, R.J. (2007) Thin-layer chromatography for the analysis of glycosaminoglycan oligosaccharides. Anal. Biochem. 371, 118–120. 29. Yang, B. (2013) Design and Construction of Multi-functional Fusion Enzymes to Degrade Cellulose/hemicellulose for Biofuel Production. Master thesis, National Taiwan University. National Taiwan University Institutional Repository, item 368.67 4621. 30. Johnson, E.A., Reese, E.T., and Demain, A.L. (1982) Inhibition of Clostridium thermocellum cellulase by end products of cellulolysis. J Appl Biochem, 4, 64–71. 31. Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990) Inhibition of Trichoderma reesei celiulase by sugars and solvents. Biotechnol Bioeng, 36, 275–287. 32. Andrić, P., Meyer, A.S., Jensen, P.A., and Dam-Johansen, K. (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv, 28, 308–324. 33. Hsieh, H.Y. (2014) Structural analysis and functional improvement of plant polysaccharides degrading enzyme from clostridium thermocellum. Master thesis, National Taiwan University. National Taiwan University Institutional Repository, item 399.74 0443. 34. Srikrishnan, S., Randall, A., Baldi, P., and Da Silva, N.A. (2012) Rationally selected single-site mutants of the Thermoascus aurantiacus endoglucanase increase hydrolytic activity on cellulosic substrates. Biotechnol Bioeng, 109(6), 1595–1599. 35. McKee, L.S., Peña, M.J., Rogowski, A., Jackson, A., Lewis, R.J., York, W.S., Krogh, K.B., Viksø-Nielsen, A., Skjøt, M., Gilbert, H.J., and Marles-Wright, J. (2012) Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Nat Acad Sci U S A, 109(17), 6537–6542. 36. Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., and Pandey, A. (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol, 127, 500–507. 37. Sukumaran, R.K., Singhania, R.R., Mathew, G.M., and Pandey, A. (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ, 34, 421–424. 38. Hong, S.Y., Lee, J.S., Cho, K.M., Math, R.K., Kim, Y.H., Hong, S.J., Cho, Y.U., Cho, S.J., Kim, H., and Yun, H.D. (2007) Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnol Lett, 29, 931–936. 39. Adlakha, N., Sawant, S., Anil, A., Lali, A., and Yazdani, S.S. (2012) Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl Environ Microbiol, 78(20), 7447–7454. 40. Hong, S.Y., Lee, J.S., Cho, K.M., Math, R.K., Kim, Y.H., Hong, S.J., Cho, Y.U., Kim, H., and Yun,H.D. (2006) Assembling a novel bifunctional cellulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett, 28, 1857–1862. 41. Qing, Q., Yang, B., and Wyman,C.E. (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol, 101, 9624–9630. 42. Ishizawa, C.I., Davis, M.F., Schell, D.F., and Johnson, D.K. (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem, 55, 2575–2581. 43. Alvira, P., Negro, M.J., and Ballesteros, M. (2011) Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol, 102, 4552–4558. 44. Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G., and Schols, H.A. (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol, 98, 2034–2042. 45. Kumar, R., and Wyman, C.E. (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol, 100, 4203–4213. 46. den Haan, R., van Rensburg, E., Rose, S.H., Görgens, J.F., and van Zyl, W.H. (2015) Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol, 33, 32–38. 47. Chhabra, S.R., Shockley, K.R., Ward, D.E., and Kelly, R.M. (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol, 68(2), 545–554. 48. Vlasenko, E., Schülein, M., Cherry, J., and Xu, F. (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol, 101(7), 2405–2411. 49. Lawoko, M., Nutt, A., Henriksson, H., Gellerstedt, G., and Henriksson, G. (2000) Hemicellulase activity of aerobic fungal cellulases. Holzforschung, 54, 497–500. 50. Lo Leggio, L., and Larsen, S. (2002) The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Lett, 523, 103–108. 51. Hilge, M., Gloor, SM., Rypniewski, W., Sauer, O., Heightman, T.D., Zimmermann, W., Winterhalter, K., and Piontek, K. (1998) High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca – substrate specificity in glycosyl hydrolase family 5. Structure, 6, 1433–1444. 52. Sakon, J., Adney, W.S., Himmel, M.E., Thomas, S.R., and Karplus, P.A. (1996) Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochemistry, 35, 10648–10660. 53. Schagerlf, U., Schagerlf, H., Momcilovic, D., Brinkmalm, G., and Tjerneld, F. (2007) Endoglucanase sensitivity for substituents in methyl cellulose hydrolysis studied using MALDI-TOFMS for oligosaccharide analysis and structural analysis of enzyme active sites. Biomacromolecules, 8, 2358–2365. 54. Wu, T.H., Huang, C.H., Ko, T.P., Lai, H.L., Ma, Y., Chen, C.C., Cheng, Y.S., Liu, J.R., and Guo, R.T. (2011) Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochim Biophys Acta, 1814(12), 1832–1840. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59464 | - |
| dc.description.abstract | 木質纖維素可被酵素水解並轉換成生質燃料。在實驗室先前的研究中,有一個從熱纖梭菌純化出來的雙功能水解酶(CtCel5E),其具有的活性可分解兩種最主要組成植物細胞壁的多醣,分別為纖維素(為葡萄糖的多聚醣)和聚木醣(為木糖聚合而成的半纖維素主要構造),使之最終分解為纖維二醣與木二醣。在之前碩士論文中,上述的雙功能酵素將與來自細菌或真菌的葡萄醣苷酶(CcBglA or TrBgl2 P172L)接合形成具cellulase, xylanase, 及β-glucosidase三種活性之融合酵素。在另一篇碩士論文中,CtCel5E中的一個flexible loop被另一來自T. maritima可分解纖維素及甘露醣的雙功能酵素TmCel5A置換而稱為CtCel5E_Tmloop,因此增加了甘露聚糖酶 (mannanase)活性。而在本篇論文發現,CtCel5E-CcBglA此融合酵素還增加了熱穩定性。CtCel5E還與另一個具木糖苷酶與葡萄糖苷酶活性的雙功能酵素接合,比起兩個雙功能酵素的混合反應,此融合酵素一樣擁有更好的活性與熱穩定性。此論文證明了一種有效與便捷的方法來合併不同酵素活性以利於生質原料的處理。為了更進一步達成統合生物加工過程(consolidated bioprocessing),融合酵素被篩選並轉殖於嗜甲醇酵母菌內。我們的最終目標是利用生物工程來創造一個能同時使用葡萄糖與木糖的釀酒酵母發酵系統,來生產生質酒精。另外,為了增進三功能酵素(CtCel5E_Tmloop)的甘露聚糖酶活性,我們利用電腦軟體疊合一些甘露聚糖酶與CtCel5E_Tmloop的結構,並藉此結構分析來預測酵素工程的突變位置,接著使用點突變與DNA片段插入刪除實驗來驗證。 | zh_TW |
| dc.description.abstract | Lignocellulosic biomass can be enzymatically degraded and converted into biofuel. We have studied a bifunctional cellulase/xylanase from thermophilic C. thermocellum (CtCel5E), which can digest two major plant cell wall polysaccharides, cellulose (a polymer of glucose) and xylan (a major hemicellulose composed of xylose), into disaccharides cellobiose and xylobiose. In the previous thesis, the bifunctional enzyme was fused with a bacterial β-glucosidase from C. cellulovorans (CcBglA) or a fungal β-glucosidase from Trichoderma reesei (TrBgl2 P172L) to form tri-functional fusion enzymes. In another thesis, a flexible loop of CtCel5E was replaced with the corresponding loop in a bifunctional cellulase/mannanase from T. maritima, called TmCel5A, to form a tri-functional enzyme with additional mannanase activity. In this thesis, we found CtCel5E-CcBglA showed enhanced thermostability. Furthermore, CtCel5E was fused with a bifunctional β-glucosidase/β-xylosidase (RuBG3A) to degrade cellulose/hemicellulose into glucose and xylose also with better efficiency than the mixture of two parental enzymes and enhanced thermostability. This study demonstrates an efficient and convenient way of consolidating different enzyme activities for synergistic biomass processing. A further step, to achieve consolidated bioprocessing, suitable fusion enzymes were selected to be incorporated into Pichia pastoris . Our final goal is to engineer a glucose/xylose-utilizing Saccharomyces cerevisiae fermentative system, to produce bioethanol. In addition, to improve the mannanase activity of the tri-functional CtCel5E_Tmloop, superimposing some structure of β-mannanase with CtCel5E_Tmloop by computer software was achieved for analyzing the strategy of enzyme engineering. Enzyme engineering was performed by site-directed mutagenesis and sequence deletion/insertion experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:24:35Z (GMT). No. of bitstreams: 1 ntu-106-R04b46028-1.pdf: 2712407 bytes, checksum: 067552cd58a16ff94ca469d17abc1eb0 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 (viii)
Abstract (ix) Abbreviations (xi) (1) Introduction (1) 1.1 The demand for alternative energy feedstock (1) 1.2 Structure of lignocellulosic biomass (2) 1.3 Glycoside hydrolases (4) 1.4 Overview of the conversion of biomass to biofuel (6) 1.5 Specific aim of this study (7) (2) Materials and methods (10) 2.1 Reagents (10) 2.2 DNA source (10) 2.3 Bacterial and yeast strains (11) 2.4 Cloning of RuBG3A (11) 2.5 Construction of fusion genes (11) 2.6 Expression and purification of recombinant proteins from E.coli (12) 2.7 Expression of recombinant proteins from P.Pastoris (14) 2.7.1 Purification of recombinant proteins with methanol-inducible expression vector pPICZα (14) 2.7.2 Purification of recombinant proteins with non-inducible expression vector pGAPZα (15) 2.8 Site-directed mutagenesis and sequence deletion/insertion (16) 2.9 Determination of enzyme activity (17) 2.9.1 Substrates used for each enzyme activity (17) 2.9.2 DNS assay (18) 2.9.3 Glucose assay (18) 2.9.4 Determination of enzyme activity for RuBG3A and Sso3032 (19) 2.9.5 Optimal pH and temperature for enzyme activity (20) 2.9.6 Determination of specific activity (20) 2.9.7 Determination of enzyme kinetics (21) 2.10 Determination of enzyme thermal stability (21) 2.11 Measurement of melting temperatures (21) 2.12 Pretreatment of rice straw (22) 2.13 Analysis of hydrolytic end produces (23) 2.14 Growth curve of recombinant P.pastoris strains in medium with different carbon sources (24) 2.15 Product inhibition assay of CtCel5E (24) 2.16 Investigation of the substrate binding modes of CtCel5E and CtCel5E_Tmloop for mannanase activity by structure superimposition (25) (3) Results (26) 3.1 Design, construction and purification of fusion proteins (26) 3.2 Characterization of the individual and fusion enzymes (27) 3.3 Kinetics of the CtCel5E and β-glucosidase fusion enzymes (28) 3.4 Kinetics of the CtCel5E and β-glucosidase/β-xylosidase fusion enzymes (30) 3.5 Elevation of melting temperature by the fusion enzymes (31) 3.6 Increased thermostability by the fusion enzymes (32) 3.7 Favorable hydrolytic behavior of the fusion enzyme compare to the enzyme mixture as revealed by TLC analysis of products (33) 3.8 Degradation of alkali-treated rice straw by tetra-functional fusion enzyme (34) 3.9 Incorporation of fusion enzymes into P. pastoris (35) 3.10 Investigation of the substrate binding modes of CtCel5E and CtCel5E_Tmloop for improving mannanase activity (36) (4) Discussion (40) 4.1 Fusion enzymes represent practical strategy to improve hydrolysis efficiency (40) 4.2 The multi-functional fusion enzymes can be potentially applied to consolidated bioprocessing (41) 4.3 Improving the mannanase activity of CtCel5E and CtCel5E_Tmloop requires further studies (43) Tables (45) Figures (51) Reference (71) | |
| dc.language.iso | en | |
| dc.subject | 半纖維素? | zh_TW |
| dc.subject | 統合生物加工過程 | zh_TW |
| dc.subject | 融合酵素 | zh_TW |
| dc.subject | 纖維素? | zh_TW |
| dc.subject | 生質能源 | zh_TW |
| dc.subject | biofuel | en |
| dc.subject | consolidated bioprocessing | en |
| dc.subject | fusion enzymes | en |
| dc.subject | cellulase | en |
| dc.subject | xylanase | en |
| dc.title | 建構與特性分析具有提高功效與熱穩定性之多功能纖維素/半纖維素分解酶 | zh_TW |
| dc.title | Construction and characterization of multi-functional cellulose/hemicellulose-degrading enzymes with improved efficacy and thermostability | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃慶璨,何孟樵 | |
| dc.subject.keyword | 生質能源,纖維素?,半纖維素?,融合酵素,統合生物加工過程, | zh_TW |
| dc.subject.keyword | biofuel,cellulase,xylanase,fusion enzymes,consolidated bioprocessing, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201700838 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-19 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
