Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59456
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊偉勛
dc.contributor.authorYi-Ting Wangen
dc.contributor.author王議霆zh_TW
dc.date.accessioned2021-06-16T09:24:20Z-
dc.date.available2022-09-12
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-06-20
dc.identifier.citationReferences
Adamczak M, Wiecek A, Funahashi T, Chudek J, Kokot F, Matsuzawa Y. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypertens. 2003 Jan.
Al-Ahmadi W, Al-Haj L, Al-Mohanna FA, Silverman RH, Khabar KS. RNase L downmodulation of the RNA-binding protein, HuR, and cellular growth. Oncogene. 2009 Apr 16.
Al-Haj L, Blackshear PJ, Khabar KS. Regulation of p21/CIP1/WAF-1 mediated cell-cycle arrest by RNase L and tristetraprolin, and involvement of AU-rich elements. Nucleic Acids Res. 2012 Sep.
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC, Jr., et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009 Oct 20.
Alberti KG, Zimmet P, Shaw J, Group IDFETFC. The metabolic syndrome--a new worldwide definition. Lancet. 2005 Sep 24-30.
Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998 Jul.
Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013 Jun-Jul.
An L, Wang X, Cederbaum AI. Cytokines in alcoholic liver disease. Arch Toxicol. 2012 Sep.
Andersen JB, Li XL, Judge CS, Zhou A, Jha BK, Shelby S, Zhou L, Silverman RH, Hassel BA. Role of 2-5A-dependent RNase-L in senescence and longevity. Oncogene. 2007.
Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. 1999. Biochem Biophys Res Commun. 2012 Aug 31.
Ben-Shmuel S, Rostoker R, Scheinman EJ, LeRoith D. Metabolic Syndrome, Type 2 Diabetes, and Cancer: Epidemiology and Potential Mechanisms. Handb Exp Pharmacol. 2016.
Bisbal C, Silhol M, Laubenthal H, Kaluza T, Carnac G, Milligan L, Le Roy F, Salehzada T. The 2'-5' oligoadenylate/RNase L/RNase L inhibitor pathway regulates both MyoD mRNA stability and muscle cell differentiation. Mol Cell Biol. 2000 Jul.
Bisbal C, Silverman RH. Diverse functions of RNase L and implications in pathology. Biochimie. 2007 Jun-Jul.
Boden G, Zhang M. Recent findings concerning thiazolidinediones in the treatment of diabetes. Expert Opin Investig Drugs. 2006 Mar.
Boden MJ, Brandon AE, Tid-Ang JD, Preston E, Wilks D, Stuart E, Cleasby ME, Turner N, Cooney GJ, Kraegen EW. Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2012 Sep 15.
Boisvert WA. Modulation of atherogenesis by chemokines. Trends Cardiovasc Med. 2004 May.
Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. J Immunol. 2005 May 01.
Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan 22.
Borysiewicz E, Doppalapudi S, Kirschman LT, Konat GW. TLR3 ligation protects human astrocytes against oxidative stress. J Neuroimmunol. 2013 Feb 15.
Brennan-Laun SE, Ezelle HJ, Li XL, Hassel BA. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res. 2014 Apr.
Brennan AM, Mantzoros CS. Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nat Clin Pract Endocrinol Metab. 2006 Jun.
Cao Z, Umek RM, McKnight SL. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev. 1991 Sep.
Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet. 2002 Feb.
Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, Catalona WJ, Nupponen N, Carpten JD, Trent JM, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet. 2002 Dec.
Cayley PJ, White RF, Antoniw JF, Walesby NJ, Kerr IM. Distribution of the ppp(A2'p)nA-binding protein and interferon-related enzymes in animals, plants, and lower organisms. Biochem Biophys Res Commun. 1982 Oct 15.
Chakrabarti A, Banerjee S, Franchi L, Loo YM, Gale M, Jr., Nunez G, Silverman RH. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe. 2015 Apr 8.
Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res. 2011 Jan.
Chang LC, Huang KC, Wu YW, Kao HL, Chen CL, Lai LP, Hwang JJ, Yang WS. The clinical implications of blood adiponectin in cardiometabolic disorders. J Formos Med Assoc. 2009 May.
Chiou WK, Wang MH, Huang DH, Chiu HT, Lee YJ, Lin JD. The relationship between serum uric acid level and metabolic syndrome: differences by sex and age in Taiwanese. J Epidemiol. 2010.
Cho SA, Joo HJ, Cho JY, Lee SH, Park JH, Hong SJ, Yu CW, Lim DS. Visceral Fat Area and Serum Adiponectin Level Predict the Development of Metabolic Syndrome in a Community-Based Asymptomatic Population. PLoS One. 2017.
Cohen SS, Gammon MD, Signorello LB, North KE, Lange EM, Fowke JH, Hargreaves MK, Cai Q, Zheng W, Blot WJ, et al. Serum adiponectin in relation to body mass index and other correlates in black and white women. Ann Epidemiol. 2011 Feb.
Consultation WHOE. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004 Jan 10.
Crowther JR. The ELISA guidebook. Methods Mol Biol. 2000.
Cuchillo CM, Nogues MV, Raines RT. Bovine pancreatic ribonuclease: fifty years of the first enzymatic reaction mechanism. Biochemistry. 2011 Sep 20.
Dar AA, Pradhan TN, Kulkarni DP, Shah SU, Rao KV, Chaukar DA, D'Cruz AK, Chiplunkar SV. Extracellular 2'5'-oligoadenylate synthetase 2 mediates T-cell receptor CD3-zeta chain down-regulation via caspase-3 activation in oral cancer. Immunology. 2016 Feb.
Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP genes in adipocyte differentiation. J Biol Chem. 1998 Nov 13.
de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008 Jan 09.
de Rivero Vaccari JP, Brand FJ, 3rd, Sedaghat C, Mash DC, Dietrich WD, Keane RW. RIG-1 receptor expression in the pathology of Alzheimer's disease. J Neuroinflammation. 2014 Apr 02.
de Souza CJ, Eckhardt M, Gagen K, Dong M, Chen W, Laurent D, Burkey BF. Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance. Diabetes. 2001 Aug.
Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov.
Dominguez LJ, Barbagallo M. The biology of the metabolic syndrome and aging. Curr Opin Clin Nutr Metab Care. 2016 Jan.
Dong B, Silverman RH. A bipartite model of 2-5A-dependent RNase L. J Biol Chem. 1997 Aug 29.
Fabre O, Breuker C, Amouzou C, Salehzada T, Kitzmann M, Mercier J, Bisbal C. Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people. Cell Death Dis. 2014.
Fabre O, Salehzada T, Lambert K, Boo Seok Y, Zhou A, Mercier J, Bisbal C. RNase L controls terminal adipocyte differentiation, lipids storage and insulin sensitivity via CHOP10 mRNA regulation. Cell Death Differ. 2012 Sep.
Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997 Jul 25.
Farmer SR. Regulation of PPARgamma activity during adipogenesis. Int J Obes (Lond). 2005 Mar.
Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006 Oct.
Fisher FM, McTernan PG, Valsamakis G, Chetty R, Harte AL, Anwar AJ, Starcynski J, Crocker J, Barnett AH, McTernan CL, et al. Differences in adiponectin protein expression: effect of fat depots and type 2 diabetic status. Horm Metab Res. 2002 Nov-Dec.
Floyd-Smith G, Denton JS. Age-dependent changes are observed in the levels of an enzyme mediator of interferon action: a (2'-5')A(n)-dependent endoribonuclease. Proc Soc Exp Biol Med. 1988 Dec.
Frayn KN, Arner P, Yki-Jarvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006.
Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998 Oct 22.
Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L, Bing C. Interleukin-1beta mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab. 2014 Aug 01.
Geloen A, Roy PE, Bukowiecki LJ. Regression of white adipose tissue in diabetic rats. Am J Physiol. 1989 Oct.
Gordon GC, Cameron JC, Pfleger BF. RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA. MBio. 2017 Mar 28.
Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975 May.
Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017 Jan.
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005.
Guarner V, Rubio-Ruiz ME. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol. 2015.
Gupta A, Rath PC. Expression of mRNA and protein-protein interaction of the antiviral endoribonuclease RNase L in mouse spleen. Int J Biol Macromol. 2014 Aug.
Hallakou S, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault MF, Dugail I, Morin J, Auwerx J, Ferre P. Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes. 1997 Sep.
Han D-S, Chu-Su Y, Chiang C-K, Tseng F-Y, Tseng P-H, Chen C-L, Wu K-D, Yang W-S. Serum myostatin is reduced in individuals with metabolic syndrome. PLoS One. 2014.
He GP, Muise A, Li AW, Ro HS. A eukaryotic transcriptional repressor with carboxypeptidase activity. Nature. 1995 Nov 02.
Hoene M, Weigert C. The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev. 2008 Jan.
Holzmann J, Frank P, Loffler E, Bennett KL, Gerner C, Rossmanith W. RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell. 2008 Oct 31.
Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes. 1999.
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000 Jun.
Howe AK, Aplin AE, Juliano RL. Anchorage-dependent ERK signaling--mechanisms and consequences. Curr Opin Genet Dev. 2002 Feb.
Huang H, Park PH, McMullen MR, Nagy LE. Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. J Gastroenterol Hepatol. 2008 Mar.
Huang H, Zeqiraj E, Dong B, Jha BK, Duffy NM, Orlicky S, Thevakumaran N, Talukdar M, Pillon MC, Ceccarelli DF, et al. Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol Cell. 2014 Jan 23.
Huang KC, Chen CL, Chuang LM, Ho SR, Tai TY, Yang WS. Plasma adiponectin levels and blood pressures in nondiabetic adolescent females. J Clin Endocrinol Metab. 2003 Sep.
Hudak CS, Sul HS. Pref-1, a gatekeeper of adipogenesis. Front Endocrinol (Lausanne). 2013.
Hung CS, Tseng PH, Tu CH, Chen CC, Liao WC, Lee YC, Chiu HM, Lin HJ, Ho YL, Yang WS, et al. Nonalcoholic Fatty Liver Disease Is Associated With QT Prolongation in the General Population. J Am Heart Assoc. 2015 Jul.
Hwang JH, Hsu CJ, Liu TC, Yang WS. Association of plasma adiponectin levels with hearing thresholds in adults. Clin Endocrinol (Oxf). 2011 Nov.
Hwang JH, Tseng FY, Liu TC, Yang WS. No association between plasma adiponectin levels and central auditory function in adults. Metab Brain Dis. 2015 Feb.
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003a Feb 15.
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003b Apr.
Isern J, Mendez-Ferrer S. Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep. 2011 Dec.
Ishii R, Nureki O, Yokoyama S. Crystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus. J Biol Chem. 2003 Aug 22.
Jaedicke KM, Taylor JJ, Preshaw PM. Validation and quality control of ELISAs for the use with human saliva samples. J Immunol Methods. 2012.
Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest. 2000 Aug.
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006 Jul.
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006 Jun.
Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014
Kazumi T, Kawaguchi A, Sakai K, Hirano T, Yoshino G. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care. 2002 Jun.
Kim KA, Kim JH, Wang Y, Sul HS. Pref-1 (preadipocyte factor 1) activates the MEK/extracellular signal-regulated kinase pathway to inhibit adipocyte differentiation. Mol Cell Biol. 2007 Mar.
Kim KI, Kim SR, Sasase N, Taniguchi M, Harada S, Kinoshita K, Kim SH, Akimoto Y, Shikata M, Kimura N, et al. 2'-,5'-Oligoadenylate synthetase response ratio predicting virological response to PEG-interferon-alpha2b plus ribavirin therapy in patients with chronic hepatitis C. J Clin Pharm Ther. 2006 Oct.
Kim MJ, Yoo JY. Active caspase-1-mediated secretion of retinoic acid inducible gene-I. J Immunol. 2008 Nov 15.
Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol. 1992 Feb.
Kobashi C, Asamizu S, Ishiki M, Iwata M, Usui I, Yamazaki K, Tobe K, Kobayashi M, Urakaze M. Inhibitory effect of IL-8 on insulin action in human adipocytes via MAP kinase pathway. J Inflamm (Lond). 2009.
Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res. 2011 Jan.
Kristiansen H, Scherer CA, McVean M, Iadonato SP, Vends S, Thavachelvam K, Steffensen TB, Horan KA, Kuri T, Weber F, et al. Extracellular 2'-5' oligoadenylate synthetase stimulates RNase L-independent antiviral activity: a novel mechanism of virus-induced innate immunity. J Virol. 2010 Nov.
Kurosawa S, Shimabuku AM, Ishizawa H, Sen K. Oligonucleotidase activity of phosphodiesterase from the fruit body of Flammulina velutipes. Agric Biol Chem. 1990 Mar.
Kusunoki M, Tsutsumi K, Sato D, Nakamura A, Habu S, Mori Y, Morishita M, Yonemoto T, Miyata T, Nakaya Y, et al. Pioglitazone-induced body weight gain is prevented by combined administration with the lipoprotein lipase activator NO-1886. Eur J Pharmacol. 2011 Oct 15.
Le Roy F, Bisbal C, Silhol M, Martinand C, Lebleu B, Salehzada T. The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells. J Biol Chem. 2001 Dec 21.
Le Roy F, Silhol M, Salehzada T, Bisbal C. Regulation of mitochondrial mRNA stability by RNase L is translation-dependent and controls IFNalpha-induced apoptosis. Cell Death Differ. 2007 Aug.
Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ, Jr., Liu XS, et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 2008 Nov 01.
Li D, Yea S, Li S, Chen Z, Narla G, Banck M, Laborda J, Tan S, Friedman JM, Friedman SL, et al. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem. 2005 Jul 22.
Li H, Tai BC. RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clin Cancer Res. 2006 Oct 01.
Li L, Wu LL. Adiponectin and interleukin-6 in inflammation-associated disease. Vitam Horm. 2012.
Li WM, Barnes T, Lee CH. Endoribonucleases--enzymes gaining spotlight in mRNA metabolism. FEBS J. 2010 Feb.
Li XL, Ezelle HJ, Kang TJ, Zhang L, Shirey KA, Harro J, Hasday JD, Mohapatra SK, Crasta OR, Vogel SN, et al. An essential role for the antiviral endoribonuclease, RNase-L, in antibacterial immunity. Proc Natl Acad Sci U S A. 2008 Dec 30.
Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, Silverman RH, Weiss SR. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016 Feb 23.
Li ZL, Woollard JR, Ebrahimi B, Crane JA, Jordan KL, Lerman A, Wang SM, Lerman LO. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler Thromb Vasc Biol. 2012 May.
Lira FS, Rosa JC, Pimentel GD, Seelaender M, Damaso AR, Oyama LM, do Nascimento CO. Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-kappaB pathway in 3T3-L1 adipocytes. Cytokine. 2012 Jan.
MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995.
Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab. 2002 Jun.
Maury E, Noel L, Detry R, Brichard SM. In vitro hyperresponsiveness to tumor necrosis factor-alpha contributes to adipokine dysregulation in omental adipocytes of obese subjects. J Clin Endocrinol Metab. 2009 Apr.
McGillicuddy FC, Chiquoine EH, Hinkle CC, Kim RJ, Shah R, Roche HM, Smyth EM, Reilly MP. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem. 2009 Nov 13.
Mei B, Zhao L, Chen L, Sul HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J. 2002 May 15.
Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab. 2008 Dec.
Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, Nakamura K, Nakamura T, Yamauchi T, Kubota N, et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem. 2005 Apr 1.
Mueller E, Drori S, Aiyer A, Yie J, Sarraf P, Chen H, Hauser S, Rosen ED, Ge K, Roeder RG, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem. 2002 Nov 01.
Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev. 2008 Jan 01.
Nakanishi M, Yoshimura A, Ishida N, Ueno Y, Kitade Y. Contribution of Tyr712 and Phe716 to the activity of human RNase L. Eur J Biochem. 2004 Jul.
Nakazato H, Suzuki K, Matsui H, Ohtake N, Nakata S, Yamanaka H. Role of genetic polymorphisms of the RNASEL gene on familial prostate cancer risk in a Japanese population. Br J Cancer. 2003 Aug 18.
National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol in A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002 Dec 17.
Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014.
Nowotny M. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 2009 Feb.
Obata Y, Yamada Y, Takahi Y, Baden MY, Saisho K, Tamba S, Yamamoto K, Umeda M, Furubayashi A, Matsuzawa Y. Relationship between serum adiponectin levels and age in healthy subjects and patients with type 2 diabetes. Clin Endocrinol (Oxf). 2013 Aug.
Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999 Dec 21-28.
Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011 Feb.
Ouchi N, Walsh K. Adiponectin as an anti-inflammatory factor. Clin Chim Acta. 2007 May 01.
Park E, Kim J. Gender- and age-specific prevalence of metabolic syndrome among Korean adults: analysis of the fifth Korean National Health and Nutrition Examination Survey. J Cardiovasc Nurs. 2015 May-Jun.
Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 2004 Feb.
Pedersen BK, Febbraio MA. Point: Interleukin-6 does have a beneficial role in insulin sensitivity and glucose homeostasis. J Appl Physiol (1985). 2007 Feb.
Pei H, Yao Y, Yang Y, Liao K, Wu JR. Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ. 2011 Feb.
Pekala PH, Moss J. 3T3-L1 preadipocyte differentiation and poly(ADP-ribose) synthetase. Mol Cell Biochem. 1983.
Pfeifer K, Ushijima H, Lorenz B, Muller WE, Schroder HC. Evidence for age-dependent impairment of antiviral 2',5'-oligoadenylate synthetase/ribonuclease L-system in tissues of rat. Mech Ageing Dev. 1993 Feb.
Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 2007 Aug 01.
Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry. 1992 Jul.
Raucci R, Rusolo F, Sharma A, Colonna G, Castello G, Costantini S. Functional and structural features of adipokine family. Cytokine. 2013 Jan.
Razzouk L, Muntner P. Ethnic, gender, and age-related differences in patients with the metabolic syndrome. Curr Hypertens Rep. 2009 Apr.
Ro HS, Zhang L, Majdalawieh A, Kim SW, Wu X, Lyons PJ, Webber C, Ma H, Reidy SP, Boudreau A, et al. Adipocyte enhancer-binding protein 1 modulates adiposity and energy homeostasis. Obesity (Silver Spring). 2007 Feb.
Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T, Pettaway CA, Vijayakumar S, Weinrich S, Furbert-Harris P, et al. Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. Prostate. 2008 Dec 01.
Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, Spiegelman BM. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002 Jan 01.
Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006 Dec.
Sahlgren CM, Mikhailov A, Hellman J, Chou YH, Lendahl U, Goldman RD, Eriksson JE. Mitotic reorganization of the intermediate filament protein nestin involves phosphorylation by cdc2 kinase. J Biol Chem. 2001 May 11.
Salehzada T, Cambier L, Vu Thi N, Manchon L, Regnier L, Bisbal C. Endoribonuclease L (RNase L) regulates the myogenic and adipogenic potential of myogenic cells. PLoS One. 2009.
Sanchez M, Galy B, Hentze MW, Muckenthaler MU. Identification of target mRNAs of regulatory RNA-binding proteins using mRNP immunopurification and microarrays. Nat Protoc. 2007.
Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012 Sep 01.
Sarkar D, Fisher PB. Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects. Cell Cycle. 2006 May.
Schroder HC, Dose K, Zahn RK, Muller WE. Isolation and characterization of the novel polyadenylate- and polyuridylate-degrading acid endoribonuclease V from calf thymus. J Biol Chem. 1980 Jun 10.
Shimura Y, Sakano H, Nagawa F. Specific ribonucleases involved in processing of tRNA precursors of Escherichia coli. Partial purification and some properties. Eur J Biochem. 1978 May.
Shindo M, Hamada K, Morikawa T, Harano Y, Nakajima T, Okuno T. In vivo interferon system assessed by 2'-5' oligoadenylate synthetase activity in chronic hepatitis C virus patients treated with pegylated interferon and ribavirin. Hepatol Res. 2008 Dec.
Siervo M, Lara J, Celis-Morales C, Vacca M, Oggioni C, Battezzati A, Leone A, Tagliabue A, Spadafranca A, Bertoli S. Age-related changes in basal substrate oxidation and visceral adiposity and their association with metabolic syndrome. Eur J Nutr. 2016 Jun.
Silverman RH. Implications for RNase L in prostate cancer biology. Biochemistry. 2003 Feb 25.
Singaraja RR, Tietjen I, Hovingh GK, Franchini PL, Radomski C, Wong K, vanHeek M, Stylianou IM, Lin L, Wang L, et al. Identification of four novel genes contributing to familial elevated plasma HDL cholesterol in humans. J Lipid Res. 2014 Aug.
Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997 Feb.
Smas CM, Chen L, Zhao L, Latasa MJ, Sul HS. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J Biol Chem. 1999 Apr 30.
Stump CS, Henriksen EJ, Wei Y, Sowers JR. The metabolic syndrome: role of skeletal muscle metabolism. Ann Med. 2006.
Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, Urano T, Zhu HJ, Tsukano H, Tazume H, et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 2009 Sep.
Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997 Dec 15.
Tang QQ, Otto TC, Lane MD. CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci U S A. 2003 Feb 04.
Thakur V, Pritchard MT, McMullen MR, Nagy LE. Adiponectin normalizes LPS-stimulated TNF-alpha production by rat Kupffer cells after chronic ethanol feeding. Am J Physiol Gastrointest Liver Physiol. 2006 May.
Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994 May 15.
Venkataraman K, Guja KE, Garcia-Diaz M, Karzai AW. Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue. Front Microbiol. 2014.
Wang CH, Wu JM. Age-related differences in the induction of 2-5A synthetase and 2-5A dependent binding protein activities by interferon in guinea pig peritoneal macrophages. Biochem Biophys Res Commun. 1986 Oct 15.
Wang F, Mullican SE, DiSpirito JR, Peed LC, Lazar MA. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARgamma. Proc Natl Acad Sci U S A. 2013a Nov 12.
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci. 2013b May 10.
Wang Y, Sul HS. Ectodomain shedding of preadipocyte factor 1 (Pref-1) by tumor necrosis factor alpha converting enzyme (TACE) and inhibition of adipocyte differentiation. Mol Cell Biol. 2006 Jul.
Wang Y, Sul HS. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab. 2009 Mar.
Wang Y, Zhao L, Smas C, Sul HS. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol Cell Biol. 2010 Jul.
Wang YT, Chiang HH, Huang YS, Hsu CL, Yang PJ, Juan HF, Yang WS. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016 Nov 10.
Wu J, Srinivasan SV, Neumann JC, Lingrel JB. The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry. 2005 Aug 23.
Wu TW, Chan HL, Hung CL, Lu IJ, Wang SD, Wang SW, Wu YJ, Wang LY, Yeh HI, Wei YH, et al. Differential patterns of effects of age and sex on metabolic syndrome in Taiwan: implication for the inadequate internal consistency of the current criteria. Diabetes Res Clin Pract. 2014 Aug.
Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol. 1996 Aug.
Wu Z, Wang S. Role of kruppel-like transcription factors in adipogenesis. Dev Biol. 2013 Jan 15.
Wu Z, Xie Y, Bucher NL, Farmer SR. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes Dev. 1995 Oct 01.
Xie L, Zeng X, Hu J, Chen Q. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int. 2015.
Yamamoto Y, Hirose H, Saito I, Tomita M, Taniyama M, Matsubara K, Okazaki Y, Ishii T, Nishikai K, Saruta T. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and serum high-density lipoprotein-cholesterol, independent of body mass index, in the Japanese population. Clin Sci (Lond). 2002 Aug.
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002 Nov.
Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab. 2001 Aug.
Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Plasma adiponectin levels in overweight and obese Asians. Obes Res. 2002 Nov.
Yeh WC, Cao Z, Classon M, McKnight SL. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 1995 Jan 15.
Yi X, Zeng C, Liu H, Chen X, Zhang P, Yun BS, Jin G, Zhou A. Lack of RNase L attenuates
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59456-
dc.description.abstract核糖核酸酶-L(ribonuclease L, RNase L)與其上游寡腺苷酸合成酶(oligoadenylate synthetase, OAS)、下游視黃酸誘發基因1(retinoic acid-inducible gene 1, RIG-I)等蛋白,負責核糖核酸型病毒入侵的防禦工作。近年來,科學家發現核糖核酸酶-L能專一降解特定信息核糖核酸(messenger RNA, mRNA)來調控如肌肉生成、細胞生長或致癌作用等功能。於此,本實驗室欲探討核糖核酸酶-L在脂肪新生(adipogenesis)所涉及的可能調控機制,乃至於與代謝症候群的關聯性。
本研究發現在3T3-L1前脂肪細胞(pre-adipocyte)中削弱核糖核酸酶-L的基因表現,會抑制脂肪細胞分化並影響其油滴聚集。於此同時,一個早期脂肪新生的抑制因子-脂肪前驅細胞因子-1(pre-adipocyte factor-1, Pref-1)之信息核糖核酸(messenger RNA, mRNA)表現量上升,其下游的焦點附著激酶(focal adhesion kinase, FAK)、細胞外訊息調節蛋白酶(extracellular signal-regulated kinases, ERK)與Y染色體性別決定區9號蛋白(sex determining region Y-box 9, Sox9)均隨著脂肪前驅細胞因子-1的上升而增加活性或蛋白量。因此提出一個假說:核糖核酸酶-L能夠降解脂肪前驅細胞因子-1的信息核糖核酸,並能藉此調控脂肪新生。使用免疫沉澱法(immunoprecipitation, IP)藉由專一抗體將核糖核酸酶-L蛋白與其信息核糖核酸複合體捕捉下來,並以反轉錄聚合酶連鎖反應(RT-PCR)方式,偵測到脂肪前驅細胞因子-1之信息核糖核酸分子於此複合體中出現。同時,本研究也觀察到脂肪前驅細胞因子-1信息核糖核酸之降解速率於過量表現核糖核酸酶-L的3T3-L1前脂肪細胞中,相較於失去活性的組別要快。此外,若在穩定敲落核糖核酸酶-L基因表現的3T3-L1前脂肪細胞中,同時藉由小分子核醣核酸干擾技術抑制脂肪前驅細胞因子-1表現,將能顯著地回復脂肪細胞分化與油滴聚集能力。
除體外培養細胞實驗外,核糖核酸酶-L與脂肪前驅細胞因子-1基因表現的關聯性,也藉由利用公開的核糖核酸表現微陣列晶片數據進行整合分析來進一步驗證。本研究使用統計軟體R的”多微陣列穩健算法(robust multi-array average, RMA)”來標準化微陣列數據。從五十六組小鼠脂肪組織微陣列整合分析中顯示,核糖核酸酶-L與脂肪前驅細胞因子-1的信息核糖核酸量呈現負相關。此外,於脂肪細胞發育早期的小鼠胚胎(embryos)、小鼠胚胎纖維母細胞(mouse embryonic fibroblasts, MEFs)之整合分析當中,此負相關亦存在。此外,於此整合分析與大鼠動物實驗更發現高脂飼料的餵食,能誘導囓齒類動物其脂肪組織表現比較高的核糖核酸酶-L與較低的脂肪前驅細胞因子-1。
數十年來,全世界代謝症候群(metabolic syndrome, MetS)的盛行率不斷攀升。既然上述的動物與細胞實驗中發現核糖核酸酶-L與脂肪新生與肥胖有相關,思考人體中是否亦有此關聯性,自然成為一重要課題。以本實驗室自行建構出來的酵素免疫分析法(enzyme-linked immunosorbent assay, ELISA),能夠運用於測量人類血清中核糖核酸酶-L蛋白量。本研究發現於三百九十六位自願受試者中,代謝症候群實驗群組血清中的核糖核酸酶-L濃度相較於非代謝症候群群組較低(平均值分別為16.5±6.4 μg/ml與18.4±8.0 μg/ml,P=0.018)。其中,有中央型肥胖(central obesity)、血壓偏高(elevated blood pressure)與空腹葡萄糖耐受不良(impaired fasting glucose, IFG)者,相對於各項正常者血清有較低的核糖核酸酶-L濃度。於多變量變項線性回歸分析(multivariate linear regression analysis)當中,舒張壓(diastolic blood pressure) (β值為-0.124,P=0.031)及高密度脂蛋白膽固醇(high-density lipoprotein cholesterol, HDL-C) (β值為0.131,P=0.038)與核糖核酸酶-L血清濃度有顯著相關。每增加5 μg/ml核糖核酸酶-L血清濃度,將減少罹患代謝症候群(勝算比為0.83,95%信賴區間為0.71-0.98,P=0.028)、中央型肥胖(勝算比為0.82,95%信賴區間為0.71-0.94,P=0.005)、高密度脂蛋白膽固醇低下(勝算比為0.86,95%信賴區間為0.74-1.00,P=0.042)的風險。除此之外,在不同的統計分析當中,受試者年齡也持續地與血清核糖核酸酶-L濃度呈現負相關。
綜合以上結果,本研究成功地證明核糖核酸酶-L能藉由降解新發現的受質,脂肪前驅細胞因子-1的信息核糖核酸,來參與脂肪新生的調控。並藉由體外(in vitro)細胞模式、電腦模擬(in silico)微陣列整合分析與動物實驗(in vivo)數據指出核糖核酸酶-L及脂肪前驅細胞因子-1基因表現量的負相關性。於此同時,人類血清中核糖核酸酶-L濃度的觀察研究,也顯示其與代謝症候群風險有顯著負相關。
zh_TW
dc.description.abstractRibonuclease L (RNase-L) participates in the oligoadenylate synthetase (OAS)-RNase-L pathway in response to the infection of RNA virus. However, recently, RNase-L also has been shown to regulate various cellular functions, including myogenesis, cell proliferation, and even carcinogenesis, through its ribonuclease specificity. Herein, the aim of this thesis is to investigate the role of RNase-L in adipogenesis and metabolism.
In the beginning, it was shown that knockdown of RNase-L reduced 3T3-L1 adipocyte differentiation and lipid accumulation. When RNase-L was silenced, the expression of pre-adipocyte factor-1 (Pref-1), an early repressor in adipogenesis, and its downstream pathway, focal adhesion kinase (FAK)-extracellular signal-regulated kinases (ERK)-sex determining region Y-box 9 (Sox9), both were induced by RNase-L suppression. Hence, it was hypothesized that RNase-L destabilizes Pref-1 mRNA to influence adipogenesis. Using RT-PCR, the presence of Pref-1 mRNA was detected in the messenger ribonuleoprotein (mRNP) complexes of RNase-L precipitated with anti-RNase-L antibody. The decay rate of Pref-1 mRNA was also increased in the 3T3-L1 pre-adipocytes stably over-expressing wild-type RNase-L ribonuclease compared with that of mutants. In stable cell clones with RNase-L knockdown, the further suppression of Pref-1 mRNA by specific siRNAs can partially recover the impairment of adipocyte differentiation and lipid accumulation capacity.
Secondly, the meta-analyses of public mouse expression array data based from 11 independent studies were performed to determine the expression relationship between RNase-L and Pref-1. The robust multi-array average (RMA) algorithm utilizing statistical software R was used to normalize the expression distribution of each sample. The meta-analysis among 56 arrays showed a negative correlation between RNase-L and Pref-1 mRNA levels in murine adipose tissue. Interestingly, higher RNase-L and lower Pref-1 mRNAs were found in the adipose tissues of high-fat diet-fed rodents compared with those fed by normal diet, whether in this in silico meta-analysis or in vivo rat data.
Over the past decades, the prevalence of metabolic syndrome (MetS) has been increasing worldwide. Since RNase-L is related to adipogenesis and obesity, our next goal was to measure the serum levels of RNase-L in humans and analyze the relationship with metabolic status. An in-house enzyme-linked immunosorbent assay (ELISA) was developed to measure human serum RNase-L levels. In a total of 396 subjects, the levels of serum RNase-L of the subjects with MetS were lower than those without (16.5±6.4 μg/ml vs. 18.4±8.0 μg/ml, P=0.018). The subjects with central obesity, elevated blood pressure, or impaired fasting glucose (IFG) had significantly lower serum RNase-L levels compared with that without. Diastolic blood pressure (β=-0.124, P=0.031) and high-density lipoprotein cholesterol (HDL-C) (β=0.131, P=0.038) was related to serum RNase-L in multivariate linear regression analysis. Risk of MetS (OR, 0.83, 95% CI, 0.71-0.98, P=0.028), central obesity (OR, 0.82, 95% CI, 0.71-0.94, P=0.005), or low HDL-C (OR, 0.86, 95% CI, 0.74-1.00, P=0.042) was reduced with every 5 μg/ml increase in serum RNase-L level. Moreover, age is also inversely associated to serum RNase-L levels in various analyses.
Taken together, it was demonstrated in this thesis that RNase-L is involved in adipogenesis through destabilizing Pref-1 mRNA, a novel substrate of RNase-L. These multiple approaches, including in vitro cell model, in silico array meta-analysis, and in vivo animal data, were applied to reveal the negative relationship between RNase-L and Pref-1 in mammals. Furthermore, the negative relation between serum RNase-L levels and MetS was also proposed and look forward to better understanding the pathogenesis of the MetS.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:24:20Z (GMT). No. of bitstreams: 1
ntu-106-D99421002-1.pdf: 6944588 bytes, checksum: 126ca7477584073a0fa5370af2ea1562 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable of Contents
Authorization of Dissertation Committee ii
Acknowledgment iii
Abstract (Chinese) iv
Abstract vii
Table of Contents x
Main Content of Doctoral Dissertation
Chapter 1 Introduction 1
1. 1 Metabolic syndrome and adipogenesis 1
1. 1. 1 Metabolic syndrome: epidemiology and complications 1
1. 1. 2 Definition of metabolic syndrome 3
1. 1. 3 Adipogenesis and metabolic regulation of adipocytes 6
1. 1. 4 Pref-1 and pre-adipocyte stage 7
1. 1. 5 C/EBPs and adipocyte differentiation 8
1. 1. 6 PPARγ and its pharmacological agonists 10
1. 1. 7 Adipokines 11
1. 2 Roles of RNase-L 13
1. 2. 1 Biochemistry of RNase-L 13
1. 2. 2 RNase-L in antiviral innate immunity and inflammation 15
1. 2. 3 RNase-L in the regulation of cellular mRNA stability 17
1. 2. 4 RNase-L in senescence and longevity 21
1. 2. 5 Genetic association with RNASEL 21
1. 3 The purpose of this study 23
Chapter 2 Subjects, materials and methods 25
2. 1 Basic research 25
2. 1. 1 Cell culture and differentiation 25
2. 1. 2 RNase-L knockdown by lentiviral transduction 26
2. 1. 3 Oil-Red-O staining 27
2. 1. 4 RNA extraction, RT, RT-PCR, and real-time PCR 28
2. 1. 5 Western blot analysis 29
2. 1. 6 mRNP immunoprecipitation 32
2. 1. 7 Pref-1 mRNA stability assay 33
2. 1. 8 Pref-1 silencing using siRNA transfection 37
2. 1. 9 Animals and adipose tissue samples 38
2. 1. 10 Statistical analysis for lab experiments 38
2. 2 Bioinformatic research 39
2. 2. 1 Meta-analyses of mouse tissue array datasets 39
2. 2. 2 Statistical analysis 40
2. 2. 3 Gene cluster analysis 41
2. 3 Clinical research and biostatistics 41
2. 3. 1 Study subjects 41
2. 3. 2 Metabolic syndrome criteria 43
2. 3. 3 Development of the immunoassay for human serum RNase-L 44
2. 3. 4 Clinical Biostatistics 47
Chapter 3 Results 48
3. 1 RNase-L controls adipogenesis by destabilizing Pref-1 mRNA 48
3. 1. 1 IL-1β induced adiponectin downregulation in 3T3-L1 adipocytes 48
3. 1. 2 The gene expression and activity of RNase-L in adipogenesis 49
3. 1. 3 Reduced RNase-L leads to the impairment of 3T3-L1 adipocyte differentiation 50
3. 1. 4 RNase-L knockdown regulates adipogenesis-related genes 51
3. 1. 5 RNase-L knockdown induced Pref-1 downstream signaling 53
3. 1. 6 Physical association of Pref-1 mRNA with RNase-L protein 54
3. 1. 7 Pref-1 mRNA decreased with RNase-L over-expression in pre-adipocytes 55
3. 1. 8 Destabilization of Pref-1 mRNA by RNase-L ribonuclease activity 56
3. 1. 9 Silencing of Pref-1 mRNA reversed the adipogenic impairment of 3T3-L1 with RNase-L knockdown 57
3. 1. 10 The relationship between RNase-L and Pref-1 expression in mouse adipose tissues in silico 58
3. 1. 11 The relationships of RNase-L and Pref-1 or CHOP10 in mouse embryos and embryonic fibroblasts in silico 60
3. 1. 12 High-fat diet-fed rats had higher RNase-L and lower Pref-1 expression in adipose tissues in vivo 61
3. 1. 13 The relationships of RNase-L and its potential substrates in mouse adipose tissues in silico 62
3. 1. 14 In silico meta-analyses in various mouse tissues and the negative relationships of RNase-L 63
3. 1. 15 Conclusion 63
3. 2 Serum RNase-L level is inversely associated with MetS and age 64
3. 2. 1 Demographics and characteristics of human subjects in MetS study 64
3. 2. 2 Serum RNase-L levels and metabolic profiles in human subjects 65
3. 2. 3 The subjects with MetS had lower serum RNase-L levels 66
3. 2. 4 Serum RNase-L level was negatively correlated with metabolic profiles in multivariate linear regression analysis 67
3. 2. 5 Serum RNase-L level was negatively correlated with MetS diagnosis in multivariate linear regression analysis 69
3. 2. 6 To analyze the gender effect on the relation between serum RNase-L level and MetS components 70
3. 2. 7 Risk of MetS was reduced with higher serum RNase-L level 71
3. 2. 8 Correlation of insulin sensitivity and serum RNase-L level 72
3. 2. 9 Conclusion 72
Chapter 4 Discussion 74
4. 1 Biological characteristics of RNase-L 74
4. 1. 1 Role of RNase-L in adipogenesis and myogenesis 74
4. 1. 2 Roles of RNase-L in the in vivo rodent model 76
4. 1. 3 RNase-L in a view of systems biology 77
4. 2 Association between serum RNase-L and MetS 79
4. 2. 1 Age and gender effects on MetS and serum RNase-L 80
4. 2. 2 Potential mechanisms underlying the association of MetS with RNase-L 81
4. 2. 3 Extracellular RNase-L and its potential release mechanism 85
4. 3 Proposed models of RNase-L in adipose tissue and serum 87
Chapter 5 Future perspectives 90
Chapter 6 Appendix 93
References 93
Tables 107
Table 1. A partial list of adipokines. 107
Table 2. A partial list of ribonucleases. 108
Table 3. A list of potential RNase-L RNA substrates. 110
Table 4. A list of the associations between human RNASEL variants/mutation and prostate cancer risk 112
Table 5. The list of primers and probes used for RT-PCR and real-time PCR. 113
Table 6. The list of GEO sample ID (GSM) and reference series number (GSE) compiled for the meta-analysis of adipose tissues. 115
Table 7. The list of GEO sample ID (GSM) and reference series number (GSE) compiled for the meta-analyses of MEFs and embryos. 116
Table 8. The example of R script of RMA normalization for chip array meta-analysis in this study 117
Table 9. The list of the regulated genes and their expression changes by interleukin-1β treatment in 3T3-L1 adipocytes. 119
Table 10. The overlapping genes negatively correlated with RNase-L in seven various tissues 120
Table 11. The demographics, biochemical characteristics, and medical history of recruited subjects. 121
Table 12. The demographics, biochemical characteristics, and medical history of the subjects with or without metabolic syndrome (MetS). 122
Table 13. The demographics, biochemical characteristics, and medical history of the subjects between genders. 123
Table 14. Pearson’s correlation coefficients of serum RNase-L with variables. 125
Table 15. The relation between serum RNase-L and metabolic factors in multivariate linear regression analyses. 126
Table 16. The relation among serum RNase-L, metabolic factors, and treatments in multivariate linear regression analyses. 128
Table 17. The relation between serum RNase-L and the diagnosis of MetS in multivariate linear regression analyses. 129
Table 18. The odds ratios for MetS according to the different quantities of serum RNase-L increase. 130
Table 19. The odds ratios for MetS and components according to every 5 μg/ml serum RNase-L increase. 131
Table 20. The odds ratios for MetS and components according to every 5 μg/ml serum RNase-L increase categorized by gender. 132
Figures 133
Figure 1 133
Figure 2 135
Figure 3 136
Figure 4 137
Figure 5 138
Figure 6 140
Figure 7 142
Figure 8 144
Figure 9 146
Figure 10 148
Figure 11 150
Figure 12 152
Figure 13 154
Figure 14 156
Figure 15 157
Figure 16 159
Figure 17 160
Figure 18 161
Figure 19 162
Figure 20 163
Figure 21 164
Publications 165
dc.language.isozh-TW
dc.subject高密度脂蛋白膽固醇低下zh_TW
dc.subject核糖核酸?-Lzh_TW
dc.subject脂肪細胞分化zh_TW
dc.subject脂肪新生zh_TW
dc.subject脂肪前驅細胞因子-1zh_TW
dc.subject焦點附著激?zh_TW
dc.subject細胞外調節蛋白?zh_TW
dc.subjectY 染色體性別決定區9 號蛋白zh_TW
dc.subject多微陣列穩健算法zh_TW
dc.subject代謝症候群zh_TW
dc.subject酵素免疫分析法zh_TW
dc.subject中央型肥胖zh_TW
dc.subject血壓偏高zh_TW
dc.subject空腹葡萄糖耐受不良zh_TW
dc.subject多變量變項線性回歸分析zh_TW
dc.subjectmultivariate linear regression analysisen
dc.subjectmetabolic syndromeen
dc.subjectenzyme-linked immunosorbent assayen
dc.subjectcentral obesityen
dc.subjectelevated blood pressureen
dc.subjectimpaired fasting glucoseen
dc.subjectlow high-density lipoprotein cholesterolen
dc.subjectRibonuclease Len
dc.subjectadipocyte differentiationen
dc.subjectpre-adipocyte factor-1en
dc.subjectfocal adhesion kinaseen
dc.subjectextracellular signal-regulated kinasesen
dc.subjectsex determining region Y-box 9en
dc.subjectrobust multi-array averageen
dc.title核糖核酸酶-L於脂肪新生之角色及其與代謝症候群之關聯zh_TW
dc.titleRole of Ribonuclease-L in Adipogenesis and Association with Metabolic Syndromeen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor曾芬郁
dc.contributor.oralexamcommittee周祖述,楊鎧鍵,蔡曜聲,阮琪昌
dc.subject.keyword核糖核酸?-L,脂肪細胞分化,脂肪新生,脂肪前驅細胞因子-1,焦點附著激?,細胞外調節蛋白?,Y 染色體性別決定區9 號蛋白,多微陣列穩健算法,代謝症候群,酵素免疫分析法,中央型肥胖,血壓偏高,空腹葡萄糖耐受不良,多變量變項線性回歸分析,高密度脂蛋白膽固醇低下,zh_TW
dc.subject.keywordRibonuclease L,adipocyte differentiation,pre-adipocyte factor-1,focal adhesion kinase,extracellular signal-regulated kinases,sex determining region Y-box 9,robust multi-array average,metabolic syndrome,enzyme-linked immunosorbent assay,central obesity,elevated blood pressure,impaired fasting glucose,multivariate linear regression analysis,low high-density lipoprotein cholesterol,en
dc.relation.page165
dc.identifier.doi10.6342/NTU201700995
dc.rights.note有償授權
dc.date.accepted2017-06-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved