請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5940
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉德銘(Der-Ming Yeh) | |
dc.contributor.author | Chin-Mu Chen | en |
dc.contributor.author | 陳錦木 | zh_TW |
dc.date.accessioned | 2021-05-16T16:18:34Z | - |
dc.date.available | 2018-08-26 | |
dc.date.available | 2021-05-16T16:18:34Z | - |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | 呂學義. 2010. 日日春花器構造、花粉活力與微體繁殖再生系統之建立. 國立嘉義大學農學研究所碩士論文.
呂學義、周慶原、沈榮壽. 2011. 日日春花器構造與強迫性自花授粉模式. 嘉大農林學報 8:18-33. 李雲、張剛、楊際雙. 2008. 熱激鍛鍊對高溫脅迫下菊花生理代謝的影響. 武漢植物學研究 26:175-178. 李懋學、張斅方、陳俊愉. 1983. 我國某些野生菊和栽培菊花的細胞學研究. 園藝學報 10:199-205. 林壽如. 2002. 臺灣花壇植物之種類與產業現況. 花卉產業現況與未來發展方向研討會專刊. 財團法人台灣區花卉發展協會. 臺北. 郭孟樺. 2012. 夏菫與毛葉蝴蝶草種間雜交胚之拯救與多倍體化. 國立臺灣大學園藝暨景觀學系碩士論文. 姜莉、陳發棣、滕年軍、陳素梅、崔娜欣、願俊杰. 2009. 重瓣和重台蓮品種花芽分化過程的解剖結構比較. 園藝學報 36:1233-1238. 陳永漢、姜義展. 1996. 日日春品種介紹. 桃園區農業專訊 18:7-10. 陳俊位、林俊義、許振川. 1997. 台灣日日春病害之發生. 臺中區農業改良場研究彙報 54:47-57. 陳裕星、柯惠喻、李國基. 2012. 朝天椒大孢子發育與子房組織化學特徵的探討.臺中區農業改良場研究彙報 116:57-67. 陳錦木、李窓明、葉德銘. 2011. 臺灣的花壇植物產業現況與展望, p.154-167. 綠色城市與花卉產業國際研討會論文集. 國立臺灣大學園藝暨景觀學系編印, 台北, 臺灣. 趙印泉、劉青林. 2009.重瓣花的形成機理及遺傳特性研究進展. 西北植物學報 4:832-841. 歐陽瑋、吳文希. 1998. 臺灣長春花病害之調查. 植物病理學會刊 7:147-149. 蔡淑華. 1992. 植物組織切片技術綱要. 茂昌圖書有限公司. 臺北. 盧守耕. 1961. 現代作物育種學. 臺大農學院出版. 鶴島 久男. 2005. 花壇學講座(17)-10.主な花壇用花きの育種と品種の發達の譜系(IV)-サルビアとビンか(カサランサス). 農業あよび園藝 80:602-607. Abo El-Nil, M.M. and A.C. Hildebrandt. 1973. Origin of androgenetic callus and haploid geranium plants. Can. J. Bot. 51:2107-2109. Almouslem, A.B. and R.A.E. Tilney-Bassett. 1989. The inheritance of flower doubleness and nectary spur in Pelargonium ×hortorum Bailey. Euphytica 41:23-29. Anderson, N.O. 2006. Flower breeding and genetics: Issues, challenges and opportunities for the 21st Century. Springer, London. Anderson, J.A. and S.R. Padhye. 2004. Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat-stressed vinca and sweet pea leaves. J. Amer. Soc. Hort. Sci. 129:54-59. Angenent, G.C., J. Franken, M. Busscher, D. Weiss, and A.J. Vantunen. 1994. Co-suppression of the petunia homeotic gene FBP2 affects the identity of the generative meristem. Plant J. 5:33-44. Armitage, A.M. 2001. Armitage’s manuals of annuals, biennials, and half-hardy perennials. Timber Press, Portland, OR. Arora, R., M.E. Wisniewski, and R. Scorza. 1992. Cold acclimation in genetically related (sibling) deciduous and evergreen peach [Prunus persica (L.) Batsch]. I. Seasonal changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 99:1562-1568. Balamurugan, S., R. Manivasagaperumal, and G. Thiyagarajan. 2011. Epicuticular wax studies on Catharanthus roseus (L.) G. Don. Plant Arch. 11:93-96. Ball, V. 1998. Ball redbook.16th ed. Ball Publ, Batavia, Ill. Blazich, F.A., P.H. Henry, and F.C. Wise. 1995. Seed germination of annual vinca responds to irradiation and temperature. HortScience 30:357-359. Blom, T. 1980. Rose research in Veinland, Canada. Bull. Roses Inc. June p.45-46. Boke, N.H. 1947. Development of the adult shoot apex and floral initiation in Vinca rosea L. Amer. J. Bot. 34:433-439. Boke, N.H. 1948. Development of the perianth in Vinca rosea L. Amer. J. Bot. 35:413-423. Boke, N.H. 1949. Development of the stamens and carpels in Vinca rosea L. Amer. J. Bot. 36:535-547. Bold, H.C., C.J. Alexopoulos, and T. Delevoryas. 1987. Morphology of plants and fungi. 5th ed. Harper-Collins, NY. Brewbaker, J.L. and B.H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50:859-865. Cartolono, M., R. Castillo, N. Efremova, M. Kuckenberg, J. Zethol, T. Gerats, Z. Schwarz-Sommer, and M. Vandenbussche. 2007. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nature Genet. 39:901-905. Chaudhary, S., V. Sharma., M. Prasad., S. Bhatia., B.N. Tripathi., G. Yadav., and S. Kumar. 2011. Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. Scientia Hort. 129:142-153. Chen, C.M. and D.M. Yeh. 2012. ‘Taoyuan No. 1 Rose Girl’: A double-flowered periwinkle, Catharanthus roseus. HortScience 47:1175-1176. Chen, C.M., T.Y. Wei, and D.M. Yeh. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47:1679-1681. Chen, H.H., Z.Y. Shen, and P.H. Li. 1982. Adaptability of crop plants to high temperature stress. Crop Sci. 22:719-725. Comba, L., S.A. Corbet, L. Hunt, and B. Warren. 1999. Flowers, nectar, and insect visits: Evaluating British plant species for pollinator-friendly gardens. Ann. Bot. 83:369-383. Curry, H.A. 2012. Naturalising the exotic and exoticising the naturalised:Horticulture, natural history and the rosy periwinkle. Environ. History 18:243-365. Davidson, C.G. and L.M. Lenz. 1990. Models of inheritance of flower colour and extra petals in Potentilla fruticosa L. Euphytica 45:237-246. Davies, B., P. Motte, E. Keck, H. Saedler, H. Sommer, and Z. Schwarz-Sommer. 1999. PLENA and FARINELLI: Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. EMBO J. 18:4023-4034. Dhawan, O.P., M.K. Dubey, and S.P.S. Khanuja. 2007. Detection of a true breeding homeotic gene mutant Pps-1 with partially petaloid sepals in opium poppy (Papaver somniferum L.) and its genetic behavior. J. Hered. 98:373-377. Dnyansagar, V. R. and I.V. Sudhakaran. 1970. Induce tetrapolidy in Vinca rosea Linn. Cytologia 35:227-241. Dolezel, J., J. Bartos., H. Voglmayr, and J. Greihuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51:127-128. Dwivedi, S., M. Singh, A.P. Singh, S. Sharma, G.C. Uniyal, S. Kumar. 2000. Assessment of genetic divergence for its purposeful exploitation in periwinkle Catharanthus roseus (Apocynaceae). J. Genet. Breed. 54:95-99. Ecker, R., A. Barzilay, and E. Osherenko. 1994. Linkage relationships of genes for leaf morphology and double flowering in Matthiola incana. Euphytica 74:133-136. Faust, J.E. and R.D. Heins. 1994. Quantifying the effect of supplemental lighting on plant temperatures in greenhouses. HortScience 29:442. Faust, J.E. and R.D. Heins. 1998. Modeling shoot-tip temperature in the greenhouse environment. J. Amer. Soc. Hort. Sci. 123:208-214. Faust, J.E., V. Holcombe., R.N.C. Rajapakse, and D.R. Layne. 2005. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649. Favali, M., R. Muestti, S. Benvenuti, A. Bianchi, and L. Pressacco. 2004. Catharanthus roseus L. plants and explants infected with phytoplasmas: Alkaloid production and structural observations. Protoplasma 223:45-51. Gaint, S., N. Manda., S. Bhattacharyya, and P.K. Das. 2011. Induction and identification of tetraploids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tiss. Organ Cult. 106:485-493. Galimba, K.D., R.T. Theador, M.S. Alessandra, R.M., M. Rainer., T. Gunter and Di stilio, Veronica. 2012. Loss of deeply conserved C-class floral homeotic gene function and C- and E-class protein interaction in a double-flowered ranunculid mutant. Proc. Natl. Acad. Sci. U.S.A. 109 :2267-2275. Garrod, J. F. and G. P. Harris. 1974. Studies on glasshouse carnation:effects of temperature and growth substances on petal number. Ann. Bot. 38:1025-1033. Gupta, S., S. Pandey-Rai., S. Srivastava., S.C. Naithani., M. Prasad., and S. Kumar. 2007. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J. Genet. 86:259-268. Hall, A.E. 1992. Breeding for heat tolerance. Plant Breed. Rev. 10:129-168. Heinze, W. 1976. Growth and flowering of Catharanthus roseus. Gartenbauwissenschaften 41:156-159. Heursel, J. and F. Garretsen. 1989. Inheritance of corolla size, number of stamens and percentage of plants with petaloid stamens in evergreen azaleas (Rhododendron subsect. obtusa). Plant Breed. 103:304-309. Hogan, S. 2003. Flora: A gardener’s encyclopedia. Timber Press, Portland, OR. Holden, D.G. and R.D. Parker. 1985. Seed-germination in Catharanthus pusillus (Murr) G. Don and Catharanthus tricophyllus (Bak) Pich. HortScience 20:186-186. Honda, K., H. Watanabe, and K. Tsutsui. 2002. Cryopreservation of Delphinium pollen at -30 ℃. Euphytica 126:315-320. Hormaza, J.I. and M. Herrero. 1992. Pollen selection. Theo. Appl. Genet. 83:663-672. Hormaza, J.I. and M. Herrero. 1996. Male gametophytic selection as a plant breeding tool. Scientia Hort. 65:321-333. Howe, T.K. and W.E. Waters. 1994. Evaluation of Catharanthus (vinca) cultivars for the landscape. Proc. Fla. State Hort. Sci. 107:404-408. Huxtable, R.J. 1992. The pharmacology of extinction. J. Ethnopharm. 37:1-11. Kakani, V.G., P.V.V. Parasad., P.Q. Craufurd, and T.R. Wheeler. 2002. Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25:1651-1661. Kim, J. and M.W. van Iersel. 2011. Slowly developing drought stress increases photosynthetic acclimation of Catharanthus roseus. Physiol. Plant. 143:166-177. Kitajima, O. 2007. U. S. Patent PP17766: Catharanthus plant named ‘Kitajima Angel Tutu’. United State Patent & Trademark Office. Knuth, P. 1909. Handbook of flower pollination. Vol.3. Clarendon Press, Oxford. Knuth, P., H. Muller, and J.R.A. Davies. 1906. Handbook of flower pollination. Vol. III. Clarendon Press, Oxford. Kotilainen, M., P. Elomaa, A. Uimari, V.A. Albert, D. Yu, and T.H. Teeri. 2000. GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893-1902. Kulkarni, R.N. 1999. Evidence for phenotypic assortative mating for flower colour in periwinkle. Plant Breed. 118:561-564. Kulkarni, R.N., and K. Baskaran. 2008. Inheritance of pollen-less anthers and thrum and pin flower in periwinkle. J. Hered. 99:426-431. Kulkarni, R.N. and K. Baskaran. 2013. From herkogamy to cleistogamy - Development of cleistogamy in periwinkle. J. Hered. 104:140-148. Kulkarni, R.N., K. Baskaran, R.S. Chandrashekara. 1999. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed. 118:71-74. Kulkarni, R.N., K. Baskaran, and Y. Sreevalli. 2005a. Genetics of novel corolla colours in periwinkle. Euphytica 144:101-107. Kulkarni, R.N., Y. Sreevalli, and K. Baskaran. 2005b. Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self-pollinating strains of periwinkle. J. Hered. 96:71-77. Kulkarni, R.N., K. Baskaran, R.S. Chandrashekara, and S. Kumar. 1999. Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed. 118:71-74. Kulkarni, R.N., Y. Sreevalli, K. Baskaran, and S. Kumar. 2001. The mechanism and inheritance of intraflower self-pollination in self-pollinating variant strain of periwinkle. Plant Breed. 120:247-250. Lammerts, W.E. 1945. The breeding of ornamental edible peaches formild climates. I. Inheritance of tree and flower characters. Amer. J. Bot.32:53–60. Leus, L., K.V. Laere, A. Dewitte, and J.V. Huylenbroeck. 2009. Flow cytometry for plant breeding. Acta Hort. 836:221-226. Leveque, D., J. Wihlm, and F. Jehl. 1996. Pharmacology of Catharanthus alkaloids. Bull. Cancer 83:176-186. Levy, A. 1981. Catharanthus roseus, p. 166-168. In: Halevy, A.H. (ed.). CRC handbook of flowering Vol. II. CRC Press, Boca Raton, FL. Levy, A., D. Palevitch, and D. Lavie. 1981. Genetic improvement of Papaver bracteatum: Heritability and selection response of thebaine and seed yields. Planta Med. 43:71-76 Liu, Z.C. and C. Mara. 2010. Regulatory mechanisms for floral homeotic gene expression. Seminars Cell Dev. Biol. 21:80-86. Loupassaki, M., M. Vasilakakis, and I. Androulakis. 1997. Effect of pre-incubation humidity and temperature treatment on the in vitro germination of avocado pollen grains. Euphytica 94:247-251. Mascarenhas, J.P. 1990. Gene activity during pollen development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:317-338. McSteen, P.C.M., C.A. Vincent, S. Doyle, R. Carpenter, and E.S. Coen. 1998. Control of floral homeotic gene expression and organ morphogenesis in Antirrhinum. Development 125:2359-2369. Merritt, R.H. and K.C. Ting. 1995. Morphological responses of bedding plants to three greenhouse temperature regimes. Scientia Hort. 60:313-324. Milo, J., A. Levy, N. Akavia, A. Ashri, and D. Palevitch. 1985. Inheritance of corolla color and anthocyanin pigments in periwinkle (Catharanthus roseus [L.] G. Don) Z. Pflanzen. 95:352-360. Miyajima, D. 2004. Pollination and seed set in vinca (Catharanthus roseus [L.] G. Don). J. Hort. Sci. Biotechnol. 79:771-775. Morris, P. 1986. Regulation of product synthesis in cell culture of Catharanthus roseus. Effect of culture temperature. Plant Cell Rpt. 5:427-429. National Garden Bureau Inc. 2002. 2002: Year of the Vinca. 8th May 2013. <http://www.ngb.org/year_of/index.cfm?YOID=7>. Niu, G., D.S Rodriguez., and Y.T. Wang. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411. Ochatt, S.J. 2008. Flow cytometry in plant breeding. Cytometry Part A 73:581-598. Parker, R.D. 1980. Interspectific hybridization in Catharanthus. HortScience 15:420. Parker, R.D. 1981. Hybrid progenies from interspecific crosses in Catharanthus. HortScience 16:454. Parker, R.D. and J.D. Vitti. 1985. Heritable characters in the genus Catharanthus (L.) Pich. HortScience 20:186. Pietsch, G.M. and W.H. Carlson. 1993. Effects of day and night temperature and light level on Catharanthus roseus. HortScience 28:502. Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) ‘Grape Cooler’. J. Amer. Soc. Hort. Sci. 120:877-881. Pinchbeck, M. and R.J. McAvoy. 1993. Growth and development of Catharanthus roseus under various environmental conditions. HortScience 28:520. Quinn, D.M., B.K. Behe, J.L. Witt, and R.S. Roark. 1996. Heat tolerance of selection annual cultivars in zone 8. HortScience 31:755. Raman, K. and R.I. Greyson. 1978. Further observation on the differential sensitivities to plant growth regulators by cultured single and double flower bud of Nigella damascena L. Amer. J. Bot. 65:180-191. Reynolds, J. and J. Tampion. 1983 Double flowers: A scientific study. Scientific and Academic Editions, New York. Roy, A.M., N. Banerjee., and S. Mandal. 2007. Variations in leaf epidermal micromorphology in mutants of Catharanthus roseus. J. Appl. Biosci. 33:49-52. Royal Horticultural Society. 2007. The Royal Horticultural Society’s colour chart. 5th ed. Royal Hort. Soc., London, UK. Rousi, A. 1968. Cytoplasmic inheritance in Aquilegia vulgaris. Hereditas 60:223-232. Saunders, E.R. 1917. Studies in the inheritance of doubleness in flowers. II Meconopsis, Althaea and Dianthus. J. Genet. 6:165-184. Scovel, G., H. Ben-Meir., M. Ovadis., H. Itzhaki, and A. Vainstein. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96: 117-122. Scovel, G., T. Altshuler, Z. Liu, and A. Vainstein. 2000. The Evergreen gene is essential for flower initiation in carnation. J. Hered. 91:487-491. Serrato, C.M.A. 1990. Contribution to the study of marigold (Tagetes sp.) flower traits. Revista Chapingo 15:151-155. Sink, Jr., K.C. 1973. The inheritance of apetalous flower type in Petunia hybrida Vilm. and linkage tests with the genes for flower doubleness and grandiflora characters and its use in hybrid seed production. Euphytica 22:520-526. Souza, D.J. and R.D. Parker. 1979. Chromosome investigations in the genus Catharanthus. HortScience 14:454. Sreevalli, Y., K. Baskaran, R.N. Kulkarni, and S. Kumar. 2000. Further evidence for the absence of automatic and intra-flower self-pollination in periwinkle. Curr. Sci. 79:1648-1649. Stead, A.D. and K.G. Moore. 1979. Studies on flower longevity in Digitalis. Planta 146: 409-414. Stern, R.A. 1998. Pollen viability in lychee. J. Amer. Soc. Hort. Sci. 123:41-46. Su, Y.T., J.C. Chen, and C.P. Lin. 2011. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol. Plant-Microbe Interact. 24:1502-1512. Tooke, F. and N.H. Battey. 2000. A leaf-derived signal is a quantitative determinant of floral form in Impatiens. Plant Cell 12:1837-1847. Uberlacker, B., B. Klinge, and W. Werr. 1996. Ectopic expression of the maize homeobox genes ZmHox1a or ZmHox1b causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell 8:349-362. USDA. 2010. Census of agriculture. National Agricultural Statistics Service. van Bergen, M. and W. Snoeijer. 1996. Catharanthus G. Don. The Madagascar perwinkle and related species. Wageningen Agr. Univ. Papers 96:1-120. van Iersel, M. W. 1999. Auxin applications affect posttransplant CO2 exchange rate and growth of bare-rooted vinca [Catharanthus roseus (L.) G. Don] seedlings. J. Amer. Soc. Hort. Sci. 124:234-238. van Iersel, M.W. 2000. Growth respiration, maintenance respiration, and carbon fixation of vinca: A time series analysis. J. Amer. Soc. Hort. Sci. 125:702-706. van Iersel, M.W. 2003. Short-term temperature change affects the carbon exchange characteristics and growth of four bedding plant species. J. Amer. Soc. Hort. Sci. 128:100-106. van Iersel, M.W., R.B. Beverly, P.A. Thomas, J.G. Latimer, and H.A. Mills. 1999. Nitrogen, phosphorus, and potassium effects on pre- and post-transplant growth of salvia and vinca seedlings. J. Plant Nutr. 22:1403-1413. van Steenis, C.G.G.J. 1934. Verspreiding der zaden van Lochnera rosea (L.) Rchb. door mieren. De Tropische Natuur 34:1-31. Vitti, J.D. and R.D. Parker. 1985. Inheritance of floral patterning in Catharanthus G. Don. HortScience 20:186. Walker, D.B. 1975. Postgenital carpel fusion in Catharanthus roseus (Apocynaceae). I. Light and scanning electron microscopic study of gynoecial ontogeny. Amer. J. Bot. 62:457-467. Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754-759. Wang, Y.Q., R. Melzer, and G. Theissen. 2011. A double-flowered variety of lesser periwinkle (Vinca minor fl. pl.) that has persisted in the wild for more than 160 years. Ann. Bot. 107:1445-1452. Weinbaum, S.A., D.E. Parfitt, and V.S. Polite. 1984. Differential cold sensitivity of pollen grain germination in two Prunus species. Euphytica 33:419-426. Weijer, J. 1959. The interaction of gibberellic acid and indoleacetic acid in Impatiens. Science 129:896-897. Xing, S.H., X.B. Guo, Q. Wang, Q.F. Pan, Y.S. Tian, P. Liu, J.Y. Zhao, G.F. Wang, X.F. Sun, and K.X. Tang. 2011. Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don. J. Biomed. Biotechnol. 2011:793198. (online only) Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membrances as a measure of heat tolerance and relationship to flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660. Yeh, D.M. and P.Y. Hsu. 2004. Heat tolerance in English ivy as measure by an electrolyte leakage technique. J. Hort. Sci. Biotechnol. 79:298-302. Zainol, R. and D.P. Stimart. 2001. A monogenic recessive gene, fw, conditions flower doubling in Nicotiana alata. HortScience 36:128-130. Zainol, R., D.P. Stimart, and R.F. Evert. 1998. Anatomical analysis of double flower morphogenesis in a Nicotiana alata mutant. J. Amer. Soc. Hort. Sci. 123:967-972. Zhou, M.L., J.R. Shao, and Y.X. Tang. 2009. Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotech. Appl. Biochem. 52:313-323. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5940 | - |
dc.description.abstract | 日日春[Catharanthus roseus (L.) G. Don]喜高溫強光,花期長,是近年來全球發展快速的花卉,新品種持續育成推出。本研究比較重瓣變異日日春TYV1品系及其單瓣親本‘Pacifica Polka Dot’不同生長期的花苞,進行解剖及埋蠟切片觀察,以瞭解新增生內花瓣的起源與形態特徵。並將其栽培於不同溫度下,探討溫度對生育、開花、細胞膜熱穩定性和花粉發芽之影響。TYV1品系雌雄蕊仍具有功能,與其他單瓣品系進行正反交、自交及回交,瞭解日日春重瓣花型的遺傳模式。最後,利用上述所得形態及遺傳資訊,建立重瓣日日春新品種之選育流程。
日日春TYV1外花瓣5片輪生成高腳碟狀(salverform),新增生內花瓣5片輪生成漏斗形(funnel-shaped),內花瓣起源於花冠筒頂端與花瓣連接處。將TYV1及‘Pacifica Polka Dot’栽培於日夜溫30/25 ℃下,可觀察到TYV1及‘Pacifica Polka Dot’花開1-2天時柱頭上部和花藥下端重疊距離分別為0.56 ± 0.01及0.82 ± 0.02 mm。TYV1子房內胚珠數明顯較‘Pacifica Polka Dot’少。依花蕾長度將發育分為12個階段,取其中前6個階段進行解剖及切片觀察,其中第1階段(0.5-0.9 mm)時,可觀察到5枚細長萼片包圍5枚離生花瓣,其內又有5個雄蕊,而正中心皮尚未完全分化。第2階段(1.0-1.9 mm)時,5枚花瓣已相互接觸並將雄蕊及心皮包裹在其中,解剖後顯示TYV1花冠筒與花瓣交界處已可觀察到內輪花瓣原體,而‘Pacifica Polka Dot’則無此構造。第3階段(2.0-2.9 mm)外觀上萼片與外花瓣約等長,內花瓣明顯伸長且邊緣可見絨毛,切片顯示內外花瓣共用一層細胞。自第5階段(4.0-4.9 mm)開始花冠筒開始快速伸長,至第10階段(21.0-25.9 mm)才減緩。第11階段時花瓣開始展開,第12階段時花瓣完全平展。TYV1自交實生苗6對葉片時期,其葉片表面皺褶,而‘Pacifica Polka Dot’則平滑。TYV1和‘Pacifica Polka Dot’之葉柄長度分別為1.3及0.4 cm。 將日日春 TYV1及‘Pacifica Polka Dot’栽培於日夜溫20/15、25/20及30/25℃下,並調查生育開花表現及細胞膜熱穩定性。結果顯示20/15℃不利TYV1及‘Pacifica Polka Dot’生育,株高矮、花徑小、分枝數少、到花日數長,花下節位數少。以25/20℃為日日春TYV1及‘Pacifica Polka Dot’之生育適溫。日日春TYV1及‘Pacifica Polka Dot’葉片相對傷害值與水浴溫度呈S形曲線關係,以‘Pacifica Polka Dot’較TYV1有較明顯熱馴化反應,但以TYV1較耐熱。取栽培於30/25℃之花粉培養於含20%蔗糖之B&K培養基並置於10-45℃環境,結果顯示TYV1花粉發芽適溫25-30℃及‘Pacifica Polka Dot’花粉發芽適溫為20-40℃,TYV1發芽適溫範圍較‘Pacifica Polka Dot’窄。 以營養繁殖之TYV1、‘Little Pinkie’及‘Titan Burgundy’為材料,進行自交、重瓣與單瓣品系雜交(F1)、F1自交(F2)及F1與種子親回交(BCF1)等組合。結果顯示TYV1自交後代皆為重瓣型,而‘Little Pinkie’及‘Titan Burgundy’自交後代全為單瓣型。四組F1後代全為單瓣型,四個F1組合中有三組之F2後代單瓣及重瓣型植株數符合3:1 (χ2 = 0.78-1.53, P = 0.22-0.37),二組BCF1後代單瓣及重瓣植株數符合1:1 (χ2 = 0.25-0.69, P = 0.41-0.62),顯示日日春之重瓣花性狀由一對隱性對偶基因控制,同質或異質顯性時表現單瓣花。重瓣日日春TYV1及單瓣‘Pacifica Polka Dot’之DNA長度與二倍體的‘Little Pinkie’無顯著差異,三者分別約有1468.0、1508.1及1457.2百萬鹼基對。 以TYV1為種子親與單瓣品系TYV3及TYV4為花粉親經雜交授粉,得單瓣F1後裔,選其中15株花徑大、生長強勢單株自交得F2單重瓣分離世代族群,再經初選及兩次品系比較試驗,選出性狀優良的五個重瓣日日春品系,分別命名為‘桃園1號-玫瑰女孩’、‘桃園2號-桃花女’、‘桃園3號-紅蝴蝶’、‘桃園4號-夏雪’及‘桃園5號-紅娘’。重瓣日日春新品種側枝數及花朵數多、株高矮,適合盆花栽培,花形均具兩輪10片花瓣,花瓣排列緊密呈漏斗狀,平均花徑3.3 ± 0.3 cm。本研究所育出之重瓣日日春品種通過中華民國農業委員會植物品種審議委員會審查通過,為目前全世界首度有品種保護的重瓣日日春,權力期間至民國119年。 | zh_TW |
dc.description.abstract | Periwinkle [Catharanthus roseus (L.) G. Don] is a heat and sun-loving plants with prolonged flowering duration. Cultivars have been developed rapidly in recent years. This study aimed to compare flower bud development of TYV1, a double-flowered periwinkle mutant, and its parent, single-flowered ‘Pacifica Polka Dot’ by dissection and wax sectioning to determine the origin of doubled petals. Plants of TYV1 and ‘Pacifica Polka Dot’ were also grown under different temperatures to establish cultural, cell membrane thermostability, and pollen germination information. With functioning pistils and stamens, TYV1 was cross-pollinated with single-flowered cultivars to create reciprocal F1 hybrid, F2, and back-crossed F1 generation to determine the inheritance of double-floweredness in periwinkle. Moreover, based on morphological and genetical information, the procedure of breeding and selection for double-flowered periwinkle was established.
TYV1 has five salverform outer corolla lobes and five funnel-shaped inner corolla lobes. Sectioning results showed inner corolla lobes of TYV1 originated from adaxial meristem originally formed into orifice in ‘Pacifica Polka Dot’. Plants of TYV1 and ‘Pacifica Polka Dot’ were grown at day/night temperature of 30/25oC, flower buds at different developmental stages were taken for anatomical observations. The overlap between the top end of the pistil and bottom ends of anthers in TYV1 and ‘Pacifica Polka Dot’ flowers at 1-2 d after anthesis was 0.56±0.01 and 0.82±0.02 mm, respectively. TYV1 had fewer ovules per ovary than ‘Pacifica Polka Dot’. Based on flower bud longitudinal length, 12 stages were proposed for flower bud development of periwinkle and the first six stages were taken for further observations. At stage 1 (0.5-0.9 mm long), undifferentiated carpel was surrounded by five stamens, then five polypetals, and five thin sepals outermost. At stage 2 (1.0-1.9 mm long), polypetals had fused into sympetal and stamens and pistil were enclosed within. Dissecting stage 2 flowers showed that TYV1 had initiated inner corolla lobe at the transition of corolla tube and lobe, but not for ‘Pacifica Polka Dot’. At stage 3 when petals and sepals have same lengths, inner corolla lobes started to elongate and had marginal hairs. Sectioning results showed both outer and inner corolla lobes had the same originality. Corolla tube rapidly elongated from stage 5 (4.0-4.9 mm long) until stage 10 (21.0-25.9 mm long). Flower anthesis at stage 11 and corolla lobe fully expanded at stage 12. Young seedlings from self-pollinated TYV1 had crinkled leaf before the sixth pair of leaves emerged, as compare with smooth leaf surface in ‘Pacifica Polka Dot’. Petiole length of TYV1 and ‘Pacifica Polka Dot’ was 1.3 and 0.4 cm, respectively. Plants of TYV1 and ‘Pacifica Polka Dot’ were grown at day/night temperatures of 20/15, 25/20, and 30/25oC, for the evaluation of the responses of growth, flowering, and cell membrane thermostability. Results showed that plants at 20/15oC had poor growth, both TYV1 and ‘Pacifica Polka Dot’ exhibited reduced plant height, flower diameter, and branching, and more days to flowering, but fewer node number below the flower. Optimum temperature for growth and flowering of TYV1 and ‘Pacifica Polka Dot’ was 25/20oC. The relationship between the RI value, as measured with water bath temperature from 25 to 75℃ for 30 min, occurring in leaf tissue discs and the water bath temperature was sigmoidal in both TYV1 and ‘Pacifica Polka Dot’. ‘Pacifica Polka Dot’ showed more heat acclimatization response than TYV1, but TYV1 could tolerate higher temperatures than ‘Pacifica Polka Dot’. Pollen from plants grown at 30/25oC was tested for incubation temperatures of 10-45oC, and results showed that the optimum pollen germination temperature was 25-30℃ for TYV1 and 20-40oC for ‘Pacifica Polka Dot’. Vegetative propagated double-flowered TYV1, single-flowered ‘Little Pinkie’, and ‘Titan Burgundy’ were used for self-pollination, cross between single- flowered and double-flowered lines (F1), F2, and back-crossed F1 of seed parents. Self-pollinated TYV1 produced all double-flowered progeny compared to self-pollinated single-flowered lines which produced all single-flowered progeny. F1 plants between TYV1 and ‘Little Pinkie’ or ‘Titan Burgundy’ were all single. Three among four F2 population segregated into 3 single : 1 double ratio (χ2 = 0.78-1.53, P = 0.22-0.37). Two BCF1 population segregated into 1 single : 1 double ratio (χ2 = 0.25-0.69, P = 0.41-0.62). Results indicated a double-flowered form was controlled by a recessive allele. A single dominant gene expressed in the homozygous or heterozygous state resulted in the single-flowered phenotype. DNA length of double-flowered TYV1 and single-flowered ‘Titan Burgundy’ did not differ with diploid ‘Little Pinkie’, and estimated to have 1468.0, 1508.1, and 1457.2 Mbp, respectively. Double-flowered TYV1 was used as female parent and crossed with single-flowered TYV3 and TYV4. Fifteen single-flowered F1 seedlings were selected based on bigger flower diameter and vigorous growth habit. Five double-flowered lines with desirable traits were selected after the first selection and two line comparison tests, and were named as ‘Taoyuan No.1 Rose Girl ’, ‘Taoyuan No.2-Peach Lady’, ‘Taoyuan No.3-Red Butterfly’, ‘Taoyuan No.4-Summer Snow’, and ‘Taoyuan No.5-Red Lady’. The new double-flowered cultivars were suitable for potted flower production characterized with more branching, flower number per plant, and shorter plant height. All the selectrd cultivars had two whirls of compacted petals in funnel-shaped, and had flower diameter of 3.3 ± 0.3 cm. The selected new double-flowered cultivars had been certified of plant breeders’ right (PBR) by Council of Agriculture, Taiwan, and were the world’s first PBR protected double-flowered periwinkle cultivars. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:34Z (GMT). No. of bitstreams: 1 ntu-102-D93628004-1.pdf: 11603299 bytes, checksum: 645e6c481c983ac998459abad94e1a54 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄 i
表目錄 iii 圖目錄 iv 中文摘要 vi Abstract viii 第一章 前言 1 第二章 前人研究 5 一、日日春的命名及流通 5 二、外觀形態 6 三、重瓣花的分類 8 四、重瓣花遺傳模式 11 五、影響重瓣花的外在環境因素 14 六、日日春品種演進 15 七、日日春育種目標 16 八、環境條件對日日春生育及開花之影響 17 九、日日春花粉活力及授粉模式 18 第三章 重瓣日日春之花芽形態發育 21 摘要 21 Abstract 22 前言(Introduction) 22 材料與方法(Materials and Methods) 24 結果(Results) 27 討論(Discussion) 28 第四章 溫度對重瓣日日春生育、細胞膜熱穩定性及花粉發芽之影響 45 摘要 45 Abstract 45 前言(Introduction) 46 材料與方法(Materials and Methods) 47 結果(Results) 49 討論(Disscussion) 50 第五章 日日春重瓣性狀之遺傳及倍體分析 67 摘要 67 Abstract 67 前言(Introduction) 68 材料與方法(Materials and Methods) 69 結果(Results) 71 討論(Discussion) 72 第六章 重瓣日日春品種之選育 79 摘要 79 Abstract 79 前言(Introduction) 80 材料與方法(Materials and Methods) 81 結果(Results) 82 討論(Disscussion) 83 第七章 綜合討論與結論 101 參考文獻(References) 105 | |
dc.language.iso | zh-TW | |
dc.title | 重瓣日日春之花芽形態、花形遺傳及育種 | zh_TW |
dc.title | Floral morphology, inheritance, and breeding of double-flowered Catharanthus roseus | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳福旗(Fure-Chyi Chen),李哖(Nean Lee),沈榮壽(Rong-Show Shen),楊雯如(Wen-Ju Yang) | |
dc.subject.keyword | 盆花,營養系品種,花藥,葉片皺縮,表皮分生組織,隱性性狀,自交二代,流式細胞儀,DNA含量, | zh_TW |
dc.subject.keyword | potted flower,vegetative cultivar,anther,crinkled leaf,adaxial meristem,recessive phenotype,F2 generation,flow cytometry,DNA content, | en |
dc.relation.page | 115 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 11.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。