請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59384
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘子明 | |
dc.contributor.author | Sheng-Fang Huang | en |
dc.contributor.author | 黃聖方 | zh_TW |
dc.date.accessioned | 2021-06-16T09:22:08Z | - |
dc.date.available | 2019-07-17 | |
dc.date.copyright | 2017-07-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-06-26 | |
dc.identifier.citation | 行政院衛生福利部。2003。健康食品之胃腸功能改善評估方法。衛署食字第 0920401629 號公告修正。
行政院衛生福利部。2012。食品中脂肪酸之檢驗方法。衛署食字第 1011903635 號。 FDA. 1992. Clostridium perfrigens. In “Bacteriological Analytical Manual”. 7th edition, Chap. 16. pp. 209-214. U.S. Food and Drug Administration. Washington, DC, USA. Food and Agriculture Organization, & World Health Organization. 2006. Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO. Alp, G. and Aslim, B. 2010. Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe. 16: 101-105. Al-Sheraji, S. H., Ismail, A., Manap, M. Y., Mustafa, S., Yusof, R. M. and Hassan, F. A. 2012. Hypocholesterolaemic effect of yoghurt containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536. Food Chemistry. 135: 356-361. Alvarez-Olmos, M. I. and Oberhelman, R. A. 2001. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clinical Infectious Diseases. 32: 1567-1576. Ashraf, R. and Shah, N. P. 2011. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—A review. International Journal of Food Microbiology. 149: 194-208. Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A. and Gordon, J. I. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America. 101: 15718-15723. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. 2005. Host-bacterial mutualism in the human intestine. Science. 307: 1915-1920. Bailey, M. T., Lubach, G. R. and Coe, C. L. 2004. Prenatal stress alters bacterial colonization of the gut in infant monkeys. Journal of Pediatric Gastroenterology and Nutrition. 38: 414-421. Belkaid, Y. and Hand, T. W. 2014. Role of the microbiota in immunity and inflammation. Cell. 157: 121-141. Bhardwaj, A., Kapila, S., Mani, J. and Malik, R. K. 2009. Comparison of susceptibility to opsonic killing by in vitro human immune response of Enterococcus strains isolated from dairy products, clinical samples and probiotic preparation. International Journal of Food Microbiology. 128: 513-515. Booijink, C. C., Zoetendal, E. G., Kleerebezem, M. and De Vos, W. M. 2007. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Medicine. 2: 285-295 Bornet, F. R. J., Brouns, F., Tashiro, Y. and Duvillier, V. 2002. Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Digestive and Liver Disease. 34: S111-S120. Caballero-Franco, C., Keller, K., De Simone, C. and Chadee, K. 2007. The VSL# 3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology. 292: G315-G322. Campbell-Platt, G. 1994. Fermented foods—a world perspective. Food Research International. 27: 253-257. Collado, M. C., Isolauri, E., Salminen, S. and Sanz, Y. 2009. The impact of probiotic on gut health. Current Drug Metabolism. 10: 68-78. Collins, S. M. 2014. A role for the gut microbiota in IBS. Nature Reviews Gastroenterology & Hepatology. 11: 497-505. Cook, S. I. and Sellin, J. H. 1998. Review article: short chain fatty acids in health and disease. Alimentary Pharmacology & Therapeutics. 12: 499-507. Cummings, J. H., Hill, M. J., Bone, E. S., Branch, W. J. and Jenkins, D. J. 1979. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 32: 2094-2101. Darfeuille-Michaud, A., Boudeau, J., Bulois, P., Neut, C., Glasser, A. L., Barnich, N. and Colombel, J. F. 2004. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 127: 412-421. Derrien, M. and van Hylckama Vlieg, J. E. 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology. 23: 354-366. Dethlefsen, L., Eckburg, P. B., Bik, E. M. and Relman, D. A. 2006. Assembly of the human intestinal microbiota. Trends in Ecology & Evolution. 21: 517-523. Ebringer, L., Ferenčík, M. and Krajčovič, J. 2008. Beneficial health effects of milk and fermented dairy products—review. Folia Microbiologica. 53: 378-394. El-Gawad, I. A. A., El-Sayed, E. M., Hafez, S. A., El-Zeini, H. M. and Saleh, F. A. 2005. The hypocholesterolaemic effect of milk yoghurt and soy-yoghurt containing bifidobacteria in rats fed on a cholesterol-enriched diet. International Dairy Journal. 15: 37-44. Falony, G., Vlachou, A., Verbrugghe, K. and De Vuyst, L. 2006. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Applied and environmental microbiology. 72: 7835-7841. Flint, H. J., Scott, K. P., Louis, P. and Duncan, S. H. 2012. The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology. 9: 577-589. Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M. and Takahashi, T. 2003. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 284: R1269-R1276. Fuller, R. 1991. Probiotics in human medicine. Gut. 32: 439-442. Gerritsen, J., Smidt, H., Rijkers, G. T. and Vos, W. M. 2011. Intestinal microbiota in human health and disease: the impact of probiotics. Genes & Nutrition. 6: 209-240. Gibson, G. R. and Roberfroid, M. B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition. 125: 1401. Gibson, G. R. and Wang, X. 1994. Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied Bacteriology. 77: 412-420. Herfel, T. M., Jacobi, S. K., Lin, X., Jouni, Z. E., Chichlowski, M., Stahl, C. H. and Odle, J. 2013. Dietary supplementation of Bifidobacterium longum strain AH1206 increases its cecal abundance and elevates intestinal interleukin-10 expression in the neonatal piglet. Food and Chemical Toxicology. 60: 116-122. Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U. and in't Veld, J. H. H. 1998. Overview of gut flora and probiotics. International Journal of Food Microbiology. 41: 85-101. Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A. and Dai, R. M. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 342: 967-970. Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E. and Mercenier, A. 2010. Application of probiotics in food products—challenges and new approaches. Current Opinion in Biotechnology. 21: 175-181. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proceedings of the National Academy of Sciences. 87: 7839-7843. Jiang, T., Mustapha, A. and Savaiano, D. A. 1996. Improvement of lactose digestion in humans by ingestion of unfermented milk containing Bifidobacterium longum. Journal of Dairy Science. 79: 750-757. Johansson, M. E., Phillipson, M., Petersson, J., Velcich, A., Holm, L. and Hansson, G. C. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences. 105: 15064-15069. Kabeerdoss, J., Devi, R. S., Mary, R. R., Prabhavathi, D., Vidya, R., Mechenro, J. and Ramakrishna, B. S. 2011. Effect of yoghurt containing Bifidobacterium lactis Bb12® on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutrition Journal 10: 138-141. Kiessling, G., Schneider, J. and Jahreis, G. 2002. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. European Journal of Clinical Nutrition. 56: 843-849. Kim, S. J., Park, S. H., Sin, H. S., Jang, S. H., Lee, S. W., Kim, S. Y. and Yang, D. K. 2017. Hypocholesterolemic effects of probiotic mixture on diet-induced hypercholesterolemic rats. Nutrients. 9: 293-302. Kolho, K. L., Korpela, K., Jaakkola, T., Pichai, M. V., Zoetendal, E. G., Salonen, A. and De Vos, W. M. 2015. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. The American Journal of Gastroenterology. 110: 921-930. Leclerc, H. D. A. A., Mossel, D. A. A., Edberg, S. C. and Struijk, C. B. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annual Reviews in Microbiology. 55: 201-234. Ley, R. E., Peterson, D. A. and Gordon, J. I. 2006a. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 124: 837-848. Ley, R. E., Turnbaugh, P. J., Klein, S. and Gordon, J. I. 2006b. Microbial ecology: human gut microbes associated with obesity. Nature. 444: 1022. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. and Knight, R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature. 489: 220-230. Macfarlane, S. and Macfarlane, G. T. 2003. Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society. 62: 67-72. MacSharry, J., O'Mahony, C., Shalaby, K. H., Sheil, B., Karmouty-Quintana, H., Shanahan, F. and Martin, J. G. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulmonary Pharmacology & Therapeutics. 25: 325-334. Malinen, E., Krogius-Kurikka, L., Lyra, A., Nikkilä, J., Jääskeläinen, A., Rinttilä, T. and Palva, A. 2010. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World Journal Gastroenterol. 16: 4532-4540. Mallol, J., Crane, J., von Mutius, E., Odhiambo, J., Keil, U., Stewart, A. and ISAAC Phase Three Study Group. 2013. The international study of asthma and allergies in childhood (ISAAC) phase three: a global synthesis. Allergologia et immunopathologia. 41: 73-85. Mantis, N. J., Rol, N. and Corthésy, B. 2011. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal immunology. 4: 603-611. Maukonen, J., Satokari, R., Mättö, J., Söderlund, H., Mattila-Sandholm, T. and Saarela, M. 2006. Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. Journal of Medical Microbiology. 55: 625-633. McNulty, N. P., Yatsunenko, T., Hsiao, A., Faith, J. J., Muegge, B. D., Goodman, A. L. and Chervaux, C. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Science Translational Medicine. 3: 106ra106. Mitsuoka, T. 1990. Bifidobacteria and their role in human health. Journal of Industrial Microbiology. 6: 263-267. Mitsuoka, T. 1992. Intestinal flora and aging. Nutrition Reviews-Washington. 50: 438-446. Modzelewska‐kapituła, m., Kłębukowska, l. and Kornacki, k. 2008. Evaluation of the possible use of potentially probiotic Lactobacillus strains in dairy products. International Journal of Dairy Technology. 61: 165-169. Odamaki, T., Sugahara, H., Yonezawa, S., Yaeshima, T., Iwatsuki, K., Tanabe, S. and Xiao, J. Z. 2012. Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe. 18: 14-18. Penders, J., Gerhold, K., Thijs, C., Zimmermann, K., Wahn, U., Lau, S. and Hamelmann, E. 2014. New insights into the hygiene hypothesis in allergic diseases: mediation of sibling and birth mode effects by the gut microbiota. Gut Microbes. 5: 239-244. Petit, L., Gibert, M. and Popoff, M. R. 1999. Clostridium perfringens: toxinotype and genotype. Trends in Microbiology. 7: 104-110. Prakash, S., Rodes, L., Coussa-Charley, M. and Tomaro-Duchesneau, C. 2011. Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 5: 71-86. Prasanna, P. H. P., Grandison, A. S. and Charalampopoulos, D. 2014. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Research International. 55: 247-262. Rajilić-Stojanović M., Smidt H. and Vos W.M. 2007. Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol. 9: 2125–2136. Rea, M. C., Dobson, A., O'Sullivan, O., Crispie, F., Fouhy, F., Cotter, P. D. and Ross, R. P. 2011. Effect of broad-and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proceedings of the National Academy of Sciences. 108: 4639-4644. Reilly, K. J. and Rombeau, J. L. 1993. Metabolism and potential clinical applications of short-chain fatty acids. Clinical Nutrition. 12: S97-S105. Roediger, W. E. 1980a. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 21: 793-798. Roediger, W. E. W. 1980b. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? The Lancet. 316: 712-715. Rolfe, R. D. 2000. The role of probiotic cultures in the control of gastrointestinal health. The Journal of Nutrition. 130: 396S-402S. Salazar, N., Binetti, A., Gueimonde, M., Alonso, A., Garrido, P., Del Rey, C. G. and Clara, G. 2011. Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology. 144: 342-351. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E. and chesselet, M. F. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 167: 1469-1480. Schwarzer, M., Srutkova, D., Schabussova, I., Hudcovic, T., Akgün, J., Wiedermann, U. and Kozakova, H. 2013. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine. 31: 5405-5412. Senok, A. C., Ismaeel, A. Y. and Botta, G. A. 2005. Probiotics: facts and myths. Clinical Microbiology and Infection. 11: 958-966. Shimoyama, T., Takahashi, R., Kimura, M. and Fukuda, Y. 2015. Study of the mechanisms of a Japanese traditional fermented medicine in the improvement of constipation. Journal of Gastroenterology and Hepatology. 30: 53-59. Sivieri, K., Morales, M. L. V., Adorno, M. A. T., Sakamoto, I. K., Saad, S. M. I. and Rossi, E. A. 2013. Lactobacillus acidophilus CRL 1014 improved “gut health” in the SHIME® reactor. BMC Gastroenterology. 13: 100-112. Slover, C. M. and Danziger, L. 2008. Lactobacillus: a review. Clinical Microbiology Newsletter. 30: 23-27. Suzuki, S., Shimojo, N., Tajiri, Y., Kumemura, M. and Kohno, Y. 2007. Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clinical & Experimental Allergy. 37: 506-511. Tannock, G. W. 1995. Microecology of the gastrointestinal tract in relation to lactic acid bacteria. International Dairy Journal. 5: 1059-1070. Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C. and Marsland, B. J. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine. 20: 159-166. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444: 1027-1031. Turroni, F., Bottacini, F., Foroni, E., Mulder, I., Kim, J. H., Zomer, A. and Delledonne, M. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proceedings of the National Academy of Sciences. 107: 19514-19519. Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C., Zhang, W. and Zhang, H. 2014. Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition. 30: 776-783. Wang, M., Monaco, M. H. and Donovan, S. M. 2016. Impact of early gut microbiota on immune and metabolic development and function. In Seminars in Fetal and Neonatal Medicine. 21: 380-387. Whitman, W. B., Coleman, D. C. and Wiebe, W. J. 1998. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences. 95: 6578-6583. Winter, S. E. and Bäumler, A. J. 2014. Why related bacterial species bloom simultaneously in the gut: principles underlying the ‘Like will to like’concept. Cellular Microbiology. 16: 179-184. Wong, J. M., De Souza, R., Kendall, C. W., Emam, A. and Jenkins, D. J. 2006. Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology. 40: 235-243. Wopereis, H., Oozeer, R., Knipping, K., Belzer, C. and Knol, J. 2014. The first thousand days–intestinal microbiology of early life: establishing a symbiosis. Pediatric Allergy and Immunology. 25: 428-438. Xiao, J. Z., Kondo, S., Takahashi, N., Miyaji, K., Oshida, K., Hiramatsu, A. and Hosono, A. 2003. Effects of milk products fermented by Bifidobacterium longum on blood lipids in rats and healthy adult male volunteers. Journal of Dairy Science. 86: 2452-2461. Xu, R., Shang, N. and Li, P. 2011. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH. Anaerobe. 17: 226-231. Young, V. B. and Schmidt, T. M. 2004. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. Journal of Clinical Microbiology. 42: 1203-1206. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59384 | - |
dc.description.abstract | 腸道菌相在體內扮演了許多角色,具有調節免疫、血脂、血糖等功能,也可以提供腸道細胞所需營養及能量,並可以協助宿主抵抗病原菌入侵。一旦菌相發生紊亂可能會導致疾病發生,而益生菌及發酵乳先前已有許多文獻證實其調節腸道菌相之功效。本研究使用含 Bifidobacterium longum 之發酵優酪乳作為樣品,每日管餵 SD 大鼠低、中、高三個劑量之 NY 優酪乳凍乾粉末,各組劑量分別為 2.2 g/kg BW、4.4 g/kg BW 及 8.8 g/kg BW (相當於含優酪乳 9.3 g/kg BW、18.6 g/kg BW 及 37.2 g/kg BW; 含 B. longum 則各為 3.40 × 104 cfu/kg BW、6.80 × 104 cfu/kg BW 及 1.36 × 105 cfu/kg BW),探討不同劑量對於腸道菌相及糞便情況之改善效果。研究結果顯示管餵低、中、高劑量之優酪乳隨著餵食時間增加,皆可以提升糞便 Bifidobacterium spp. 與 Lactobacillus spp. 之菌數及降低盲腸及糞便內 Enterobacteriaceae 及 Clostridium perfringens 之菌數,顯示其具有改善腸道菌相之功能。此外餵食 NY 優酪乳亦可以提升腸道轉運速率、降低糞便 pH 值、增加糞便水分含量,並可以提高糞便及盲腸內容物之短鏈脂肪酸含量,藉此增進腸道健康。綜合以上結果,含 B. longum 之發酵優酪乳可以透過調節腸道菌相、改善糞便情況及腸道蠕動速率,以及增加短鏈脂肪酸含量來達到促進腸道健康之功效。 | zh_TW |
dc.description.abstract | Gut microbiota plays an important role in our body, it have several functions, such as immune regulation, blood lipid and blood glucose regulation, nutrients production and energy required for intestinal cells. And it provides a barrier to against pathogen invasion. Gut microbiota dysbiosis may lead diseases, as probiotics and fermented milk could rebalance gut microbiota in previous studies. In this study, using fermented yogurt containing Bifidobacterium longum as sample (NY yogurt) to understand the intestinal beneficial effect of different doses. Sprague-Dawley (SD) rats were orally administrated with 2.2 g/kg BW, 4.4 g/kg BW and 8.8 g/kg BW yogurt powder per day (i.e. 9.3 g/kg BW, 18.6 g/kg BW and 37.2 g/kg BW yogurt; 3.40 × 104 cfu/kg BW, 6.80 × 104 cfu/kg BW and 1.36 × 105 cfu/kg BW B. longum), respectively. This result shows that feeding B. longum contenting yogurt can increase fecal Bifidobacterium spp. and Lactobacillus spp. contents, and decrease the numbers of Enterobacteriaceae and Clostridium perfringens in cecum and feces. It displays that this yogurt has improvement effect on gut microbiota. In addition, feeding NY yogurt can increase intestinal transit rate, reduce fecal pH value, increase fecal moisture, and increase caecum and fecal short-chain fatty acid contents. Thereby, it shows the enhancing effects of intestinal health. Based on the above results, the fermented yogurt containing B. longum can improve fecal condition and intestinal peristalsis by adjusting gut microbiota, and enhancing the short-chain fatty acids to promote intestinal health. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:22:08Z (GMT). No. of bitstreams: 1 ntu-106-R04b22051-1.pdf: 2687406 bytes, checksum: d286c79954da3c43be186030480755a3 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
縮寫表…………………………………………………………………………………… I 中文摘要………………………………………………………………………………… II 英文摘要………………………………………………………………………………… III 目錄……………………………………………………………………………………… IV 圖目錄…………………………………………………………………………………… VIII 表目錄…………………………………………………………………………………… X 第一章 前言…………………………………………………………………….………. 1 第二章 文獻回顧………………………………………………………………….……. 2 一、 腸道菌相…………………………………………………………………………… 2 (一) 腸道菌相分布與組成………………………………………………………..….... 2 (二) 腸道菌相於胃腸道內之分布情形………………………………………….....…. 2 (三) 人體腸道菌相來源………………………………………………………..……… 4 (四) 腸道菌相對宿主之影響………..………………………………………..……….. 4 (五) 影響腸道菌相之因素…………………………………………………..………… 7 二、 腸道菌相失調導致之疾病………………………………………………………… 7 (一) 發炎性腸道疾病 (inflammatory bowel disease, IBD).…………….……………. 7 (二) 腸躁症 (irritable bowel syndrome, IBS)……………………………..…………... 7 (三) 特異性和過敏性疾病 (atopic and allergic diseases)…………………………..... 10 (四) 代謝症候群 (metabolic disease)…………………………………..……………. 10 三、 益生菌……………………………………………………………...………………. 11 (一) 益生菌於乳製品之應用………………………………………………...………... 11 (二) 乳酸桿菌 (Lactobacillus spp.) ……………………………………...…………… 12 (三) 雙歧桿菌 (Bifidobacterium spp.) ……………………………………...………… 12 (四) Bifidobacterium longum 之功效……………………………………...………….. 12 (五) 益生菌改善腸道菌相之策略……………………………………...……………... 14 四、 腸道有害菌……………………………………...…………………………………. 16 (一) 腸內菌科 (Enterobacteriaceae) ……………………………………...…………... 16 (二) 產氣莢膜梭菌 (Clostridium perfrigens) …………………………………...….. 17 五、 短鏈脂肪酸 (SCFAs)……………………………………...………………………. 17 (一) 乙酸……………………………………...……………………………………...… 18 (二) 丙酸……………………………………...……………………………………...… 18 (三) 丁酸……………………………………...……………………………………...… 18 六、 腸道菌相改善評估方法……………………………………...………….………… 20 第三章 研究動機與實驗架構………………………………………………………….. 21 一、 研究動機……………………………………...…………..……………………...… 21 二、 實驗架構……………………………………...…………………..……………...… 21 第四章 材料與方法…………………………………………………………………….. 23 一、 藥品試劑…………………………………………………………………………… 23 二、 儀器設備…………………………………………………………………………… 23 三、 試驗方法…………………………………………………………………………… 24 (一) 試驗物質……………………………………...…………………………………... 24 (二) 實驗動物飼養與照料……………………………………...…………………...… 30 (三) 實驗動物日程與動物犧牲及樣品採集……………………………………...…... 30 (四) 腸蠕動速率之測量……………………………………...………………………... 30 (五) 腸道菌相檢測……………………………………...……………………………... 34 (六) 糞便粒數計數及秤重……………………………………...……………………... 42 (七) 糞便水分含量之測定……………………………………...……………………... 42 (八) 糞便 pH 值之測定……………………………………...……………………...... 42 (九) 糞便及盲腸內容物短鏈脂肪酸測定……………………………………...……... 42 (十) 生物統計分析方法……………………………………...……………………....... 44 第五章 結果與討論…………………………………………………………………….. 51 一、 攝食量、攝水量與體重...………………………………………………………... 51 (一) 大鼠實驗期間攝食與攝水量變化情形……………………………………….…... 51 (二) 大鼠實驗期間體重變化情形……………………………………...………………. 51 二、 腸道菌相……………………………………...……………………....................... 51 (一) 糞便中 Clostridium perfringens 含量變化情形……………………….……..…... 51 (二) 糞便中 Enterobacteriaceae 含量變化情形………………………..………….…... 56 (三) 糞便中 Lactobacillus spp. 含量變化情形………………………………………... 56 (四) 糞便中 Bifidobacterium spp. 含量變化情形……………………………………... 59 (五) 盲腸內容物中菌相……………………………………...……………………......... 59 (六) 盲腸菌相與糞便菌相之比較……………………………………...………………. 59 三、 糞便情況……………………………………...………………..………................. 62 (一) 大鼠糞便之酸鹼值……………………………………...……………………......... 62 (二) 大鼠糞便水分含量………………………………...……………………................. 62 (三) 糞便數量及重量……………………………………...……………………............. 65 (四) 糞便情況改善作用…………………………………………...………………......... 65 四、 腸蠕動轉運速率……………………………………..…...……………………..... 65 五、 短鏈脂肪酸………………………………..………...…………………………..... 69 (一) 盲腸短鏈脂肪酸含量……………………………………...……………………..... 69 (二) 糞便短鏈脂肪酸含量……………………………………...……………………..... 69 (三) 盲腸與糞便短鏈脂肪酸含量比較……………………………………...…………. 69 (四) 短鏈脂肪酸與健康之關聯…………………………………….........……………... 72 六、 短鏈脂肪酸與腸道菌相之關聯……………………………..…………...………. 72 七、 短鏈脂肪酸與腸蠕動速率之關聯…………………………..……………...……. 72 八、 結果總整理……………………………………………………………………….. 75 第六章 結論……………………………………...……………………........................... 77 第七章 參考文獻……………………………………...……………………................... 79 | |
dc.language.iso | zh-TW | |
dc.title | Bifidobacterium longum 為主要成份優酪乳對於大鼠腸道菌相之改善效果 | zh_TW |
dc.title | The improvement effect of yogurt containing mainly Bifidobacterium longum on gut microbiota in rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王志傑,邱秋霞,李俊霖,蔣慎思 | |
dc.subject.keyword | Bifidobacterium longum,腸道菌相,腸道蠕動,短鏈脂肪酸, | zh_TW |
dc.subject.keyword | Bifidobacterium longum,gut microbiota,intestinal peristalsis,short chain fatty acid, | en |
dc.relation.page | 89 | |
dc.identifier.doi | 10.6342/NTU201701001 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-06-27 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。