請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee),吳光鐘(Kuang-Chong Wu) | |
| dc.contributor.author | Chia-Cheng Chien | en |
| dc.contributor.author | 簡嘉政 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:21:48Z | - |
| dc.date.available | 2022-08-31 | |
| dc.date.copyright | 2020-09-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] G. W. A. Dummer, Electronic Inventions and Discoveries: Electronics from Its Earliest Beginnings to the Present Day, 3rd ed. Amsterdam: Elsevier Science, 1983, pp. 15-18. [2] W.-C. Ko, '溶液製程駐極體的電荷儲存機制與在可撓式靜電致動器的應用,' 博士, 工程科學及海洋工程學研究所, 臺灣大學, 臺北市, pp. 48-63 ,2010. [3] H. Sorvoja, V.-M. Kokko, R. Myllyla, and J. Miettinen, 'Use of EMFi as a blood pressure pulse transducer,' IEEE Transactions on instrumentation and measurement, vol. 54, no. 6, pp. 2505-2512, 2005. [4] J. L. Ealo, F. Seco, and A. R. Jimenez, 'Broadband EMFi-based transducers for ultrasonic air applications,' IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 4, pp. 919-929, 2008. [5] R. Gerhard-Multhaupt, 'Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 5, pp. 850-859, 2002. [6] 謝仁豪, '同軸式壓電暨駐極體自感應致動器之研製,' 碩士, 應用力學研究所, 臺灣大學, 臺北市, pp. 30-46, 2016. [7] G. Sessler, 'Electrets,' Applied Optics, vol. 26, p. 3739, 1987. [8] H. Griese and G. Kock, 'Neu auf dem Weltmarkt: der erste offene elektrostatische Kopfhörer mit Elektret-Membran,' Funkschau, vol. 49, pp. 1251-1254, 1977. [9] M. Paajanen, J. Lekkala, and K. Kirjavainen, 'ElectroMechanical Film (EMFi)—a new multipurpose electret material,' Sensors and Actuators A: Physical, vol. 84, no. 1-2, pp. 95-102, 2000. [10] J.-L. Chen and D.-M. Chiang, 'A novel flexible loudspeaker driven by an electret diaphragm,' in Audio Engineering Society Convention 121st, San Francisco, 2006. [11] D.-M. Chiang, W.-L. Liu, J.-L. Chen, and R. Susuki, 'PALS and SPM/EFM investigation of charged nanoporous electret films,' Chemical physics letters, vol. 412, no. 1-3, pp. 50-54, 2005. [12] W.-C. Ko, C.-K. Tseng, Y. Leu, W.-J. Wu, A. S.-Y. Lee, and C.-K. Lee, 'Use of 2-(6-mercaptohexyl) malonic acid to adjust the morphology and electret properties of cyclic olefin copolymer and its application to flexible loudspeakers,' Smart materials and structures, vol. 19, no. 5, p. 055007, 2010. [13] W.-C. Ko, C.-K. Tseng, W.-J. Wu, and C.-K. Lee, 'Charge storage and mechanical properties of porous PTFE and composite PTFE/COC electrets,' e-polymers, vol. 10, no. 1, 2010. [14] T. T. Wang, J. M. Herbert, and A. M. Glass, The applications of ferroelectric polymers. Bishopbriggs, Glasgow: Blackie and Son, pp. 222-222, 1988. [15] M. Wegener and S. Bauer, 'Microstorms in cellular polymers: A route to soft piezoelectric transducer materials with engineered macroscopic dipoles,' ChemPhysChem, vol. 6, no. 6, pp. 1014-1025, 2005. [16] S. J. Rupitsch, R. Lerch, J. Strobel, and A. Streicher, 'Ultrasound transducers based on ferroelectret materials,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 69-80, 2011. [17] S. Kärki, T. Salpavaara, and J. Lekkala, 'EMFi in wearable audio applications,' in 4th International Workshop on Wearable and Implantable Body Sensor Networks, Germany, pp. 86-91 , 2007. [18] J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, and D. H. Kim, 'Flexible and stretchable smart display: materials, fabrication, device design, and system integration,' Advanced Functional Materials, vol. 28, no. 35, p. 1801834, 2018. [19] M. Popescu and I. Bunget, Physics of solid dielectrics. Amsterdam: Elsevier, 1984, pp. 30-65. [20] K. C. Kao, Dielectric phenomena in solids. Amsterdam: Elsevier, 2004, pp. 115-212. [21] S. O. Kasap, Principles of electronic materials and devices. New York: Tata McGraw-Hill, 2006, pp. 3-81. [22] S. Gray, 'IV. A letter from Mr. Stephen Gray to Dr. Mortimer, Secr. RS Containing a farther account of his experiments concerning electricity,' Philosophical Transactions of the Royal Society of London, vol. 37, no. 423, pp. 285-291, 1732. [23] M. Faraday, 'I. Experimental researches in electricity.—fifteenth series,' Philosophical Transactions of the Royal Society of London, no. 129, pp. 1-12, 1839. [24] O. Heaviside, 'Electromagnetic induction and its propagation,' The Electrician, vol. 14, pp. 178-180, 1885. [25] G. M. Sessler, Physical principles of electrets (Electrets). Berlin, Heidelberg: Springer, 1980, pp. 13-80. [26] G. Sessler, 'Electrets Third Edition,' ed. USA: Laplacian Press, 1998, pp. 13-18. [27] M. Goel, 'Recent approaches in electret research in India and study of polarization in new advanced materials,' in 11th International Symposium on Electrets, Glen Waverley, Melbourne, Australia, 2002: IEEE, pp. 165-168. [28] Y. Yagyik, I. Talwar, N. Lal, K. Nagpaul, and R. Jethi, 'The electret effect of kidney stones,' Biomaterials, vol. 8, no. 6, pp. 503-505, 1987. [29] R. Gerhard, 'Improving essential properties of dielectrics for electro-electrets, piezo-electrets and ferroelectric polymer electrets via physico-chemical routes,' in 2013 IEEE International Conference on Solid Dielectrics (ICSD), 2013. [30] F. Carpi, D. De Rossi, R. Kornbluh, R. E. Pelrine, and P. Sommer-Larsen, Dielectric elastomers as electromechanical transducers: Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Amsterdam: Elsevier, 2011, pp. 13-21. [31] R. D. Kornbluh et al., From boots to buoys: promises and challenges of dielectric elastomer energy harvesting (Electroactivity in polymeric materials). Berlin: Springer, 2012, pp. 67-93. [32] C. Son and B. Ziaie, 'Electret based wireless micro ionizing radiation dosimeter,' in 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, 2006. [33] S. Bauer, R. Gerhard-Multhaupt, and G. M. Sessler, 'Ferroelectrets: Soft electroactive foams for transducers,' Physics Today, vol. 57, pp. 37-44, 2004. [34] S. Junnila, A. Akhbardeh, and A. Värri, 'An electromechanical film sensor based wireless ballistocardiographic chair: Implementation and performance,' Journal of Signal Processing Systems, vol. 57, no. 3, pp. 305-320, 2009. [35] M. Wegener, W. Wirges, J. Fohlmeister, B. Tiersch, and R. Gerhard-Multhaupt, 'Two-step inflation of cellular polypropylene films: void-thickness increase and enhanced electromechanical properties,' Journal of Physics D: Applied Physics, vol. 37, no. 4, p. 623, 2004. [36] D. Rychkov and R. Gerhard, 'Stabilization of positive charge on polytetrafluoroethylene electret films treated with titanium-tetrachloride vapor,' Applied Physics Letters, vol. 98, no. 12, p. 122901, 2011. [37] D. Rychkov, A. Kuznetsov, and A. Rychkov, 'Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 8-14, 2011. [38] O. Heaviside, 'Electromagnetic induction and its propagation. Electrization and Electrification. Natural Electrets,' The Electrician, vol. 15, pp. 230-231, 1885. [39] A. Gubkin and G. Skanavi, 'Soviet Phys,' Tech. Phys, vol. 2, p. 1813, 1957. [40] A. Lüker. A short history of ferroelectricity [Online] Available: talari. com. [41] W. P. Mason, 'Piezoelectricity, its history and applications,' The journal of the Acoustical Society of America, vol. 70, no. 6, pp. 1561-1566, 1981. [42] G. W. Pierce, Piezoelectric Crystal Oscillators Applied to the Precision Measurement of the Velocity of Sound in Air and CO₂ at High Frequencies (Proceedings of the American Academy of Arts and Sciences, no. 5). Cambridge: American Academy of Arts Sciences, 1925, pp. 271-302. [43] K. Brain, 'Investigations of piezo-electric effects with dielectrics,' Proceedings of the Physical Society of London, vol. 36, no. 1, p. 81, 1923. [44] W. P. Mason, Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950, pp. 11-19. [45] B. Jaffe, R. Roth, and S. Marzullo, 'Properties of Piezoelectric Ceramics in the Solid-Solution Series PbTiO3-Pb ZrO3-PbO: SnO2 and PbTiO3-PbHfO3,' Journal of Research of the National Bureau of Standards, vol. 55, no. 5, p. 239, 1955. [46] H. Kawai, 'The piezoelectricity of PVDF,' Japanese Journal of Applied Physics, vol. 8, p. 975, 1969. [47] S. Zhukov, S. Fedosov, and H. von Seggern, 'Piezoelectrets from sandwiched porous polytetrafluoroethylene (ePTFE) films: influence of porosity and geometry on charging properties,' Journal of Physics D: Applied Physics, vol. 44, no. 10, p. 105501, 2011. [48] T. Furukawa, 'Piezoelectricity and pyroelectricity in polymers,' IEEE Transactions on electrical insulation, vol. 24, no. 3, pp. 375-394, 1989. [49] S. B. Lang, 'Pyroelectricity: from ancient curiosity to modern imaging tool,' Physics today, vol. 58, no. 8, p. 31, 2005. [50] M. Stewart, M. Cain, and D. Hall, Ferroelectric hysteresis measurement and analysis. London: National Physical Laboratory Teddington, 1999, pp. 14-22. [51] L. Yang, X. Li, E. Allahyarov, P. L. Taylor, Q. Zhang, and L. Zhu, 'Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect,' Polymer, vol. 54, no. 7, pp. 1709-1728, 2013. [52] IEEE Standard on Piezoelectricity, A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 1988. [53] A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, 'Cellular polymer ferroelectret: a review on their development and their piezoelectric properties,' Advances in Polymer Technology, vol. 37, no. 2, pp. 468-483, 2018. [54] J. Hillenbrand and G. Sessler, 'Piezoelectricity in cellular electret films,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 4, pp. 537-542, 2000. [55] M. Paajanen, H. Minkkinen, and J. Raukola, 'Gas diffusion expansion-increased thickness and enhanced electromechanical response of cellular polymer electret films,' in 11th International Symposium on Electrets, Melbourne, Victoria, Australia, Australia, 2002. [56] S. Bauer et al., 'Ferroelectrets: polymer-foam space-charge electrets with ferroelectric-like behaviour,' in 12th International Symposium on Electrets, Salvador, Brazil, 2005. [57] M. Abdel-Salam, M. Nakano, and A. Mizuno, 'Electric fields and corona currents in needle-to-meshed plate gaps,' Journal of Physics D: Applied Physics, vol. 40, no. 11, p. 3363, 2007. [58] J. A. Giacometti, S. Fedosov, and M. M. Costa, 'Corona charging of polymers: recent advances on constant current charging,' Brazilian Journal of Physics, vol. 29, no. 2, pp. 269-279, 1999. [59] E. Nilsson, A. Lund, C. Jonasson, C. Johansson, and B. Hagström, 'Poling and characterization of piezoelectric polymer fibers for use in textile sensors,' Sensors and Actuators A: Physical, vol. 201, pp. 477-486, 2013. [60] S. B. Lang and D. Das‐Gupta, 'Laser‐intensity‐modulation method: A technique for determination of spatial distributions of polarization and space charge in polymer electrets,' Journal of applied physics, vol. 59, no. 6, pp. 2151-2160, 1986. [61] S. Lang, 'An analysis of the integral equation of the surface laser intensity modulation method using the constrained regularization method,' IEEE Transactions on dielectrics and electrical insulation, vol. 5, no. 1, pp. 70-76, 1998. [62] J. C. Jaeger and H. S. Carslaw, Conduction of heat in solids. Oxford: Clarendon Press, 1959, pp. 281-327. [63] R. Collins, 'Analysis of spatial distribution of charges and dipoles in electrets by a transient heating technique,' Journal of Applied Physics, vol. 47, no. 11, pp. 4804-4808, 1976. [64] F. Mopsik and A. DeReggi, 'Numerical evaluation of the dielectric polarization distribution from thermal‐pulse data,' Journal of Applied Physics, vol. 53, no. 6, pp. 4333-4339, 1982. [65] S. B. Lang, Sourcebook of pyroelectricity. Cleveland: CRC Press, 1974, pp. 38-61. [66] B. Gross and R. De Moraes, 'Polarization of the electret,' The Journal of Chemical Physics, vol. 37, no. 4, pp. 710-713, 1962. [67] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 7th ed. USA: American Association of Physics Teachers, 1999, pp. 935-962. [68] J. Hillenbrand and G. Sessler, 'Quasistatic and dynamic piezoelectric coefficients of polymer foams and polymer film systems,' IEEE Transactions on Dielectrics and Electrical Insulation, vol. 11, no. 1, pp. 72-79, 2004. [69] X. Zhang, J. Hillenbrand, and G. Sessler, 'Ferroelectrets with improved thermal stability made from fused fluorocarbon layers,' Journal of Applied Physics, vol. 101, no. 5, p. 054114, 2007. [70] R. Kressmann, 'Linear and nonlinear piezoelectric response of charged cellular polypropylene,' Journal of Applied Physics, vol. 90, no. 7, pp. 3489-3496, 2001. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59372 | - |
| dc.description.abstract | 本論文以多孔聚丙烯駐極體的製程開發與特性分析為研究主軸,聚丙烯駐極體的可撓性使其在軟性電子元件上備受重視。本研究以商業用的聚丙烯合成膜為材料,透過設計高壓腔體與氣體擴散膨脹法,加熱聚丙烯薄膜,使其內部孔洞產生膨脹,並利用電暈極化,使其擁有駐電、熱電及壓電效應,以實現多孔駐極體之製程開發。本研究並利用雷射強度調變法產生不同頻率下的熱脈衝施加在聚丙烯駐極體表面上,使駐極體產生熱電效應之電流並加以觀察,其電流峰對峰值最高可達5.5pA。再透過鎖相放大器比較出電流的實部及虛部。本研究亦將所得之電流的實部及虛部分布曲線代入Fredholm integral equation of the first kind的駐極體電流基本方程式,討論在各情況下計算複數電流與假設傅立葉級數對空間電荷與極化量分布之影響,以探討駐極體之應用範圍。此外本研究還開發測量壓電係數d33之動態法,利用震盪器所產生之加速度對駐極體施以應力,量測其產生之電荷密度並透過壓電本構方程式計算出d33為124.98pC/N,為一般聚偏二氟乙烯壓電薄膜之6.21倍大,再透過準靜態法藉此了解自製之多孔駐極體PQ60在準靜態或低頻率上的優勢,可以達到266.14 pC/N。這些特性都一再顯現了駐極體在可撓性感測器與致動器上的發展空間。 | zh_TW |
| dc.description.abstract | This thesis focuses on the development and analysis of cellular electret fabricated from commercial polypropylene (PP) films. The flexibility of PP electret makes it an excellent candidate for soft electronic component. The commercial PP films (PQ60) is transferred into cellular electrets by using Gas diffusion expansion (GDE). PP films are inflated to form layered porous structure. Corona discharge is then used to inject electrons and makes pores to store charges creating pyroelectric and piezoelectric effect. Experimental results verified that using these processes, we have successfully converted PP films into the cellular electret films. Moreover, Laser-Intensity-Modulation method is applied to analyze the pyroelectric effect. Modulating laser intensity in different frequencies, the highest peak-to-peak current can reach up to 5.5 pA. Then the lock-in amplifier is used measure complex current. Substituting the complex current into electret fundamental equation, Fredholm integral equation of the first kind, and using Fourier series, the distribution of space charge and polarization in electret are analyzed and discussed. Finally, Dynamic method is applied to measure the piezoelectric constant d33 of the cellular electret. The average piezoelectric constant of PP cellular electret is 124.98 pC/N, and it is 6.21 times than the general polyvinylidene difluoride (PVDF) films. And use quasi-static measurement to measure piezoelectric constant which is 266.14 pC/N. These experimental results suggest that the developed cellular electret has a potential to be applied in the field of flexible sensor and actuator. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:21:48Z (GMT). No. of bitstreams: 1 U0001-1408202011445700.pdf: 7350813 bytes, checksum: da030a808d4bfea6d007e546371aeea7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 I 誌謝 II 中文摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 研究背景 1 1.3 研究動機 3 1.4 論文架構 4 第2章 壓電駐極體原理及文獻探討 5 2.1 駐極體原理特性 5 2.1.1 導體與介電質 5 2.1.2 駐極體物理特性 7 2.1.3 駐極體之分類 8 2.1.4 駐極體電場基本方程式 10 2.2 壓電材料原理特性 12 2.2.1 壓電材料研究背景 12 2.2.2 壓電材料簡介 13 2.2.3 壓電、熱電、鐵電效應 15 2.2.4 壓電本構方程式 19 2.2.5 壓電駐極體原理特性 21 第3章 多孔駐極體薄膜構造與分析原理 22 3.1 多孔聚丙烯駐極體製程原理 22 3.1.1 多孔結構 22 3.1.2 電容變化及孔洞大小之關係 22 3.1.3 極化方法 23 3.2 雷射光強度調變法分析自由電荷與偶極極化量 25 3.2.1 實驗流程與熱傳導方程式原理 25 3.2.2 電位、電流與空間電荷、偶極極化量之關係 28 3.2.3 空間電荷與極化量分布 29 3.3 駐極體壓電係數量測原理 30 3.3.1 準靜態法、動態法、干涉法 30 3.3.2 駐極體電荷訊號與壓力之關係 32 第4章 研究方法與實驗架設 34 4.1 多孔聚丙烯薄膜駐極體製程 34 4.1.1 實驗及設備 34 4.1.2 氣體擴散膨脹法 34 4.1.3 熱處理及電暈放電極化 34 4.2 動態法之壓電系數測量 35 4.2.1 實驗及設備 36 4.2.2 實驗流程 36 4.2.3 壓電係數量測 38 4.3 雷射強度調變法之駐極體電流分析 40 4.3.1 實驗及設備 40 4.3.2 量測架設 41 4.3.3 聚丙烯駐極體薄膜電流量測 43 第5章 實驗結果與討論 45 5.1 製程實驗結果 45 5.1.1 多孔聚丙烯駐極體薄膜厚度及孔洞 45 5.1.2 薄膜電位變化 47 5.2 雷射光強度調變法量測結果 48 5.2.1 雷射光半徑對電流關系之探討 48 5.2.2 雷射強度調變頻率對電流及鎖相放大器之結果 49 5.3 駐極體空間電荷及極化量關係之分析 50 5.3.1 傅立葉級數求解 51 5.3.2 複數電流頻率分段計算結果 51 5.3.3 實際電流與傅立葉級數求解 54 5.3.4 空間電荷與極化量分布 59 5.4 壓電係數量測結果 62 5.4.1 砝碼重量對於壓電係數關係之量測結果 62 5.4.2 應力對於電荷產生之關係 62 5.4.3 準靜態法與動態法量測之壓電係數比較 64 第6章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 65 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 動態法 | zh_TW |
| dc.subject | 多孔駐極體 | zh_TW |
| dc.subject | 壓電效應 | zh_TW |
| dc.subject | 熱電效應 | zh_TW |
| dc.subject | 雷射強度調變法 | zh_TW |
| dc.subject | cellular electret | en |
| dc.subject | piezoelectric effect | en |
| dc.subject | pyroelectric effect | en |
| dc.subject | Dynamic method | en |
| dc.subject | Laser-Intensity-modulation method | en |
| dc.title | 多孔聚丙烯薄膜駐極體之製程開發與特性分析 | zh_TW |
| dc.title | Analysis and development of electret in cellular Polypropylene films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 許聿翔(Yu-Hsiang Hsu) | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),柯文清(Wen-Ching Ko) | |
| dc.subject.keyword | 多孔駐極體,壓電效應,熱電效應,動態法,雷射強度調變法, | zh_TW |
| dc.subject.keyword | cellular electret,piezoelectric effect,pyroelectric effect,Dynamic method,Laser-Intensity-modulation method, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU202003390 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202011445700.pdf 未授權公開取用 | 7.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
