請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59362完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 華國泰(Kuo-Tai Hua) | |
| dc.contributor.author | Chia-Wen Liu | en |
| dc.contributor.author | 劉嘉雯 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:21:31Z | - |
| dc.date.available | 2022-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-29 | |
| dc.identifier.citation | 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87-108.
2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7-30. 3. Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, et al. Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci. 2008;99:1507-14. 4. Galbiatti AL, Padovani-Junior JA, Maniglia JV, Rodrigues CD, Pavarino EC, Goloni-Bertollo EM. Head and neck cancer: causes, prevention and treatment. Braz J Otorhinolaryngol. 2013;79:239-47. 5. Fanucchi M, Khuri FR. Chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck. Seminars in oncology. 2004;31:809-15. 6. Brockstein B, Haraf DJ, Rademaker AW, Kies MS, Stenson KM, Rosen F, et al. Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience. Ann Oncol. 2004;15:1179-86. 7. Machiels JP, Lambrecht M, Hanin FX, Duprez T, Gregoire V, Schmitz S, et al. Advances in the management of squamous cell carcinoma of the head and neck. F1000Prime Rep. 2014;6:44. 8. Schmitz S, Ang KK, Vermorken J, Haddad R, Suarez C, Wolf GT, et al. Targeted therapies for squamous cell carcinoma of the head and neck: current knowledge and future directions. Cancer Treat Rev. 2014;40:390-404. 9. Pendleton KP, Grandis JR. Cisplatin-Based Chemotherapy Options for Recurrent and/or Metastatic Squamous Cell Cancer of the Head and Neck. Clin Med Insights Ther. 2013;2013. 10. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, et al. Systems biology of cisplatin resistance: past, present and future. Cell death & disease. 2014;5:e1257. 11. Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer research. 2002;62:4899-902. 12. Handra-Luca A, Hernandez J, Mountzios G, Taranchon E, Lacau-St-Guily J, Soria JC, et al. Excision repair cross complementation group 1 immunohistochemical expression predicts objective response and cancer-specific survival in patients treated by Cisplatin-based induction chemotherapy for locally advanced head and neck squamous cell carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13:3855-9. 13. Jun HJ, Ahn MJ, Kim HS, Yi SY, Han J, Lee SK, et al. ERCC1 expression as a predictive marker of squamous cell carcinoma of the head and neck treated with cisplatin-based concurrent chemoradiation. British journal of cancer. 2008;99:167-72. 14. Katano K, Kondo A, Safaei R, Holzer A, Samimi G, Mishima M, et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer research. 2002;62:6559-65. 15. Zisowsky J, Koegel S, Leyers S, Devarakonda K, Kassack MU, Osmak M, et al. Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem Pharmacol. 2007;73:298-307. 16. Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular aspects of medicine. 2009;30:1-12. 17. Hagrman D, Goodisman J, Souid AK. Kinetic study on the reactions of platinum drugs with glutathione. J Pharmacol Exp Ther. 2004;308:658-66. 18. Chen HH, Kuo MT. Role of glutathione in the regulation of Cisplatin resistance in cancer chemotherapy. Metal-based drugs. 2010;2010:pii: 430939. 19. Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L, et al. Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2001;15:19-21. 20. Lu SC. Glutathione synthesis. Biochimica et biophysica acta. 2013;1830:3143-53. 21. Li MH, Jang JH, Na HK, Cha YN, Surh YJ. Carbon monoxide produced by heme oxygenase-1 in response to nitrosative stress induces expression of glutamate-cysteine ligase in PC12 cells via activation of phosphatidylinositol 3-kinase and Nrf2 signaling. The Journal of biological chemistry. 2007;282:28577-86. 22. Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proceedings of the National Academy of Sciences of the United States of America. 1992;89:3070-4. 23. Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, et al. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys. 2004;423:116-25. 24. Mulcahy RT, Untawale S, Gipp JJ. Transcriptional up-regulation of gamma-glutamylcysteine synthetase gene expression in melphalan-resistant human prostate carcinoma cells. Molecular pharmacology. 1994;46:909-14. 25. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews Drug discovery. 2009;8:579-91. 26. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780-3. 27. Baylin SB. DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol. 2005;2 Suppl 1:S4-11. 28. Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16:71-84. 29. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell research. 2011;21:381-95. 30. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13:97-109. 31. Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures and human epigenetics. Int J Epidemiol. 2012;41:79-105. 32. Clark SJ, Melki J. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene. 2002;21:5380-7. 33. Fahrner JA, Eguchi S, Herman JG, Baylin SB. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer research. 2002;62:7213-8. 34. Chi P, Allis CD, Wang GG. Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nature reviews Cancer. 2010;10:457-69. 35. Ivanov M, Kacevska M, Ingelman-Sundberg M. Epigenomics and interindividual differences in drug response. Clin Pharmacol Ther. 2012;92:727-36. 36. Murai F, Koinuma D, Shinozaki-Ushiku A, Fukayama M, Miyaozono K, Ehata S. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-beta-Smad-ASCL1 pathway. Cell Discov. 2015;1:15026. 37. Lee ST, Li Z, Wu Z, Aau M, Guan P, Karuturi RK, et al. Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Molecular cell. 2011;43:798-810. 38. Tang B, Zhang Y, Liang R, Gao Z, Sun D, Wang L. RNAi-mediated EZH2 depletion decreases MDR1 expression and sensitizes multidrug-resistant hepatocellular carcinoma cells to chemotherapy. Oncol Rep. 2013;29:1037-42. 39. Kuang Y, Cai J, Li D, Han Q, Cao J, Wang Z. Repression of Dicer is associated with invasive phenotype and chemoresistance in ovarian cancer. Oncol Lett. 2013;5:1149-54. 40. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. The Journal of biological chemistry. 2001;276:25309-17. 41. Brown SE, Campbell RD, Sanderson CM. Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm Genome. 2001;12:916-24. 42. Shankar SR, Bahirvani AG, Rao VK, Bharathy N, Ow JR, Taneja R. G9a, a multipotent regulator of gene expression. Epigenetics. 2013;8:16-22. 43. Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Molecular cell. 2012;48:491-507. 44. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 2006;8:188-94. 45. Dong KB, Maksakova IA, Mohn F, Leung D, Appanah R, Lee S, et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 2008;27:2691-701. 46. Casciello F, Windloch K, Gannon F, Lee JS. Functional Role of G9a Histone Methyltransferase in Cancer. Front Immunol. 2015;6:487. 47. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer cell. 2013;23:316-31. 48. Chang CC, Wu MJ, Yang JY, Camarillo IG, Chang CJ. Leptin-STAT3-G9a Signaling Promotes Obesity-Mediated Breast Cancer Progression. Cancer research. 2015;75:2375-86. 49. Ding J, Li T, Wang X, Zhao E, Choi JH, Yang L, et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell metabolism. 2013;18:896-907. 50. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, et al. A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol. 2011;7:566-74. 51. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. Journal of the National Cancer Institute. 2000;92:205-16. 52. Kasten FH, Pineda LF, Schneider PE, Rawls HR, Foster TA. Biocompatibility testing of an experimental fluoride releasing resin using human gingival epithelial cells in vitro. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 1989;25:57-62. 53. Yang MH, Lin BR, Chang CH, Chen ST, Lin SK, Kuo MY, et al. Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene. 2012;31:2401-11. 54. Cabrera CM, Cobo F, Nieto A, Cortes JL, Montes RM, Catalina P, et al. Identity tests: determination of cell line cross-contamination. Cytotechnology. 2006;51:45-50. 55. Zhao X, Pang L, Qian Y, Wang Q, Li Y, Wu M, et al. An animal model of buccal mucosa cancer and cervical lymph node metastasis induced by U14 squamous cell carcinoma cells. Exp Ther Med. 2013;5:1083-8. 56. D'Incalci M, Colombo T, Ubezio P, Nicoletti I, Giavazzi R, Erba E, et al. The combination of yondelis and cisplatin is synergistic against human tumor xenografts. European journal of cancer. 2003;39:1920-6. 57. Shalinsky DR, Bischoff ED, Gregory ML, Lamph WW, Heyman RA, Hayes JS, et al. Enhanced antitumor efficacy of cisplatin in combination with ALRT1057 (9-cis retinoic acid) in human oral squamous carcinoma xenografts in nude mice. Clinical cancer research : an official journal of the American Association for Cancer Research. 1996;2:511-20. 58. de Belle I, Mercola D, Adamson ED. Method for cloning in vivo targets of the Egr-1 transcription factor. BioTechniques. 2000;29:162-9. 59. Li KC, Hua KT, Lin YS, Su CY, Ko JY, Hsiao M, et al. Inhibition of G9a induces DUSP4-dependent autophagic cell death in head and neck squamous cell carcinoma. Molecular cancer. 2014;13:172. 60. Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, et al. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Molecular cell. 2014;53:277-89. 61. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & development. 2005;19:815-26. 62. Chang CW, Chen YS, Chou SH, Han CL, Chen YJ, Yang CC, et al. Distinct subpopulations of head and neck cancer cells with different levels of intracellular reactive oxygen species exhibit diverse stemness, proliferation, and chemosensitivity. Cancer research. 2014;74:6291-305. 63. Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. The Journal of biological chemistry. 2012;287:32800-24. 64. Perez A, Neskey DM, Wen J, Pereira L, Reategui EP, Goodwin WJ, et al. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 2013;49:306-13. 65. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31:1869-83. 66. Ohmichi M, Hayakawa J, Tasaka K, Kurachi H, Murata Y. Mechanisms of platinum drug resistance. Trends in pharmacological sciences. 2005;26:113-6. 67. Komatsu M, Sumizawa T, Mutoh M, Chen ZS, Terada K, Furukawa T, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer research. 2000;60:1312-6. 68. Moreno-Smith M, Halder JB, Meltzer PS, Gonda TA, Mangala LS, Rupaimoole R, et al. ATP11B mediates platinum resistance in ovarian cancer. The Journal of clinical investigation. 2013;123:2119-30. 69. Samimi G, Safaei R, Katano K, Holzer AK, Rochdi M, Tomioka M, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10:4661-9. 70. Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, et al. Role of glutathione in cancer progression and chemoresistance. Oxidative medicine and cellular longevity. 2013;2013:972913. 71. Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson's disease. Exp Neurol. 2007;203:512-20. 72. Reliene R, Schiestl RH. Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. Carcinogenesis. 2006;27:240-4. 73. Kigawa J, Minagawa Y, Cheng X, Terakawa N. Gamma-glutamyl cysteine synthetase up-regulates glutathione and multidrug resistance-associated protein in patients with chemoresistant epithelial ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 1998;4:1737-41. 74. Igarashi T, Izumi H, Uchiumi T, Nishio K, Arao T, Tanabe M, et al. Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene. 2007;26:4749-60. 75. Wild AC, Moinova HR, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. The Journal of biological chemistry. 1999;274:33627-36. 76. Kimura T, Kawasaki Y, Okumura F, Sone T, Natsuki R, Isobe M. Ethanol-induced expression of glutamate-cysteine ligase catalytic subunit gene is mediated by NF-kappaB. Toxicology letters. 2009;185:110-5. 77. Yao KS, Godwin AK, Johnson SW, Ozols RF, O'Dwyer PJ, Hamilton TC. Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer research. 1995;55:4367-74. 78. Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev. 2012;64:706-21. 79. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nature reviews Drug discovery. 2006;5:769-84. 80. Almeida LO, Abrahao AC, Rosselli-Murai LK, Giudice FS, Zagni C, Leopoldino AM, et al. NFkappaB mediates cisplatin resistance through histone modifications in head and neck squamous cell carcinoma (HNSCC). FEBS Open Bio. 2014;4:96-104. 81. Cai MY, Tong ZT, Zhu W, Wen ZZ, Rao HL, Kong LL, et al. H3K27me3 protein is a promising predictive biomarker of patients' survival and chemoradioresistance in human nasopharyngeal carcinoma. Mol Med. 2011;17:1137-45. 82. He LR, Liu MZ, Li BK, Rao HL, Liao YJ, Guan XY, et al. Prognostic impact of H3K27me3 expression on locoregional progression after chemoradiotherapy in esophageal squamous cell carcinoma. BMC Cancer. 2009;9:461. 83. Pan MR, Hsu MC, Luo CW, Chen LT, Shan YS, Hung WC. The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer. Oncotarget. 2016;7:61136-51. 84. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nature reviews Drug discovery. 2012;11:384-400. 85. Chen WL, Wang ZH, Feng TT, Li DD, Wang CH, Xu XL, et al. Discovery, design and synthesis of 6H-anthra[1,9-cd]isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorg Med Chem. 2016;24:6102-8. 86. Avgustinova A, Benitah SA. Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol. 2016;17:643-58. 87. Kim Y, Kim YS, Kim DE, Lee JS, Song JH, Kim HG, et al. BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy. 2013;9:2126-39. 88. Gursoy-Yuzugullu O, Carman C, Serafim RB, Myronakis M, Valente V, Price BD. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget. 2017;8:24518-32. 89. Bakker J, Lin X, Nelson WG. Methyl-CpG binding domain protein 2 represses transcription from hypermethylated pi-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. The Journal of biological chemistry. 2002;277:22573-80. 90. Drayton RM, Dudziec E, Peter S, Bertz S, Hartmann A, Bryant HE, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20:1990-2000. 91. Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity. Cancer Treat Rev. 1997;23:209-40. 92. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? Journal of the National Cancer Institute. 2008;100:773-83. 93. Schmidinger M, Budinsky AC, Wenzel C, Piribauer M, Brix R, Kautzky M, et al. Glutathione in the prevention of cisplatin induced toxicities. A prospectively randomized pilot trial in patients with head and neck cancer and non small cell lung cancer. Wien Klin Wochenschr. 2000;112:617-23. 94. Savarese DM, Savy G, Vahdat L, Wischmeyer PE, Corey B. Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treat Rev. 2003;29:501-13. 95. DeBerardinis RJ, Cheng T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313-24. 96. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101-5. 97. Griffith OW, Mulcahy RT. The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol. 1999;73:209-67, xii. 98. Sun WM, Huang ZZ, Lu SC. Regulation of gamma-glutamylcysteine synthetase by protein phosphorylation. Biochem J. 1996;320 ( Pt 1):321-8. 99. Lauterburg BH, Mitchell JR. Toxic doses of acetaminophen suppress hepatic glutathione synthesis in rats. Hepatology. 1982;2:8-12. 100. Franklin CC, Rosenfeld-Franklin ME, White C, Kavanagh TJ, Fausto N. TGFbeta1-induced suppression of glutathione antioxidant defenses in hepatocytes: caspase-dependent post-translational and caspase-independent transcriptional regulatory mechanisms. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2003;17:1535-7. 101. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Molecular aspects of medicine. 2009;30:86-98. 102. Backos DS, Fritz KS, Roede JR, Petersen DR, Franklin CC. Posttranslational modification and regulation of glutamate-cysteine ligase by the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal. Free Radic Biol Med. 2011;50:14-26. 103. Tanabe M, Izumi H, Ise T, Higuchi S, Yamori T, Yasumoto K, et al. Activating transcription factor 4 increases the cisplatin resistance of human cancer cell lines. Cancer research. 2003;63:8592-5. 104. Liu S, Ye D, Guo W, Yu W, He Y, Hu J, et al. G9a is essential for EMT-mediated metastasis and maintenance of cancer stem cell-like characters in head and neck squamous cell carcinoma. Oncotarget. 2015;6:6887-901. 105. Cha TL, Zhou BP, Xia W, Wu Y, Yang CC, Chen CT, et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science. 2005;310:306-10. 106. Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol. 2011;13:87-94. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59362 | - |
| dc.description.abstract | 頭頸部鱗狀細胞癌是世界上最常見的癌症之一,近年來主要治療方式為手術切除及合併放射線治療和化學治療,但於中晚期病患之治療預後依舊不甚理想。治療過程中癌細胞對於化療藥物產生抗性,進而導致癌症復發及轉移仍然是治療上的最大難題。而抗藥性之產生近年來被確認與癌細胞惡性程度相關。表觀基因修飾異常為癌症發生與惡化之重要機制,其中負責催化組蛋白H3離胺酸9 (H3K9)甲基化之組蛋白甲基轉移酶G9a已在數種癌症中被證實會過量表現,並於促進癌症進程中扮演關鍵角色。因此研究G9a在頭頸部鱗狀細胞癌調控化療藥物抗性之可能角色及機轉將可助於改善化學治療策略並防止腫瘤復發及轉移。此研究中我們於頭頸部鱗狀細胞癌組織中發現,G9a的表現與病患之化療效力及無疾病存活期皆呈現負相關性。並且於體外篩選之具順鉑 (cisplatin)藥物抗性之細胞株中發現G9a的表現量及酵素活性皆有上升現象。利用RNA干擾技術抑制G9a基因表現或以專一性抑制劑抑制其酵素活性皆顯著使藥物抗性細胞對藥物敏感化,並增加藥物誘發之細胞凋亡。進一步發現,此機制係因G9a能藉由轉錄活化谷氨酸-半胱氨酸合成酶催化次體(glutamate-cysteine ligase catalytic subunit)增加細胞中谷胱甘肽(glutathione)含量,而谷胱甘肽已知為代謝順鉑藥物之主要物質,因而促使癌細胞產生藥物抗性。於頭頸部鱗狀細胞癌組織中也證實G9a之表現量和谷氨酸-半胱氨酸合成酶催化次體具顯著正相關性。綜合以上,上述研究結果說明了G9a於頭頸部鱗狀細胞癌中會促使癌細胞對於化療藥物產生抗性,顯示阻斷其相關網絡可做為改善預後之策略,期望此研究發現之G9a於抗藥性角色可進一步提供癌症治療一新指標。 | zh_TW |
| dc.description.abstract | Transient chemotherapeutic response is a major obstacle to treating head and neck squamous cell carcinomas (HNSCC), even though there have been substantial advances in current therapeutic strategies. It is widely recognized that a wide variety of epigenetic changes are prevalent in cancer, including histone modification. Histone methyltransferase G9a has recently been shown to be abundantly expressed in HNSCC, and is required to maintain the malignant phenotype. Thus, to investigate the role of G9a in HNSCC chemoresistance may provide benefit for improving cancer therapeutic strategies. In this study, we found that high G9a expression is significantly associated with poor chemotherapeutic response and disease-free survival in HNSCC patients. Similarly, G9a expression and enzymatic activity were elevated in cisplatin-resistant HNSCC cells. Genetic or pharmacological inhibition of G9a sensitized the resistant cells to cisplatin and increased drug-induced cell apoptosis. Mechanistic investigations indicated that G9a contributes to transcriptional activation of the glutamate-cysteine ligase catalytic subunit (GCLC), which results in upregulation of cellular glutathione (GSH) content and drug resistance. Additionally, we observed a significant positive correlation between G9a and GCLC expression in tumor tissue of HNSCC patients. Taken together, our findings provide evidence that G9a protects HNSCC cells against chemotherapy by increasing the biosynthesis of GSH, and imply G9a as a promising target for overcoming cisplatin resistance in HNSCC. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:21:31Z (GMT). No. of bitstreams: 1 ntu-106-F00447010-1.pdf: 3967726 bytes, checksum: 76a0d54182317ec75d5fff99a89a053c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書…………… I
中文摘要 …………… II Abstract …………… III Chapter 1. Introduction …………… 1 1.1. Head and neck squamous cell carcinoma (HNSCC) and therapeutic approaches …………… 2 1.2. The mechanisms of chemotherapy resistance in HNSCC …………… 4 1.3. Epigenetic dysregulation and histone methyltransferase in cancer …………… 6 Chapter 2. Materials and Methods …………… 10 Chapter 3. Results …………… 22 3.1. G9a expression is associated with poor chemotherapeutic response and cisplatin sensitivity in HNSCC …………… 23 3.2. Depletion of G9a by shRNA or enzymatic inhibitor sensitizes resistant cells to cisplatin treatment …………… 25 3.3. G9a-promoted cisplatin resistance is mediated by upregulating intracellular glutathione (GSH) levels …………… 26 3.4. Supplement of glutathione ethyl ester restores G9a depletion-mediated cisplatin sensitization in vivo …………… 29 3.5. G9a transcriptionally upregulates the glutamate-cysteine ligase catalytic subunit (GCLC) …………… 30 3.6. Upregulated GCLC contributes to G9a-promoted cisplatin resistance in HNSCC …………… 32 Chapter 4. Discussion …………… 34 Chapter 5. Tables, Figures and Figure Legends …………… 42 Chapter 6. References …………… 79 Appendix …………… 89 | |
| dc.language.iso | en | |
| dc.subject | 谷氨酸-半胱氨酸合成?催化次體 | zh_TW |
| dc.subject | 頭頸部鱗狀細胞癌 | zh_TW |
| dc.subject | 化學治療抗藥性 | zh_TW |
| dc.subject | 組蛋白甲基轉移?G9a | zh_TW |
| dc.subject | 組蛋白H3離胺酸9甲基化 | zh_TW |
| dc.subject | 谷胱甘? | zh_TW |
| dc.subject | Histone H3 lysine 9 (H3K9) methylation | en |
| dc.subject | glutamate-cysteine ligase catalytic subunit (GCLC) | en |
| dc.subject | Glutathione (GSH) | en |
| dc.subject | Head and neck squamous cell carcinomas (HNSCC) | en |
| dc.subject | Chemotherapy resistance | en |
| dc.subject | Histone methyltransferase G9a | en |
| dc.title | 探討組蛋白甲基轉移酶G9a在調控頭頸癌化療藥物抗性之角色 | zh_TW |
| dc.title | The Role of Histone Methyltransferase G9a in Head and Neck Cancer Chemoresistance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 康照洲(Jaw-Jou Kang),蕭宏昇(Michael Hsiao),柯政郁(Jenq-Yuh Ko),譚慶鼎(Ching-Ting Tan) | |
| dc.subject.keyword | 頭頸部鱗狀細胞癌,化學治療抗藥性,組蛋白甲基轉移?G9a,組蛋白H3離胺酸9甲基化,谷胱甘?,谷氨酸-半胱氨酸合成?催化次體, | zh_TW |
| dc.subject.keyword | Head and neck squamous cell carcinomas (HNSCC),Chemotherapy resistance,Histone methyltransferase G9a,Histone H3 lysine 9 (H3K9) methylation,Glutathione (GSH),glutamate-cysteine ligase catalytic subunit (GCLC), | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201701150 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
