Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59324
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor董致韡(Chih-Wei Tung)
dc.contributor.authorChe-Wei Changen
dc.contributor.author張哲瑋zh_TW
dc.date.accessioned2021-06-16T09:20:30Z-
dc.date.available2017-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-07-03
dc.identifier.citationArgyris, J. M., A. Ruiz-Herrera, P. Madriz-Masis, W. Sanseverino, J. Morata, et al., 2015. Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics 16: 1-14.
Arumuganathan, K. and E. D. Earle. 1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporter 9: 208-218.
Baudracco-Arnas, S. and M. Pitrat. 1996. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theoretical and Applied Genetics 93: 57-64.
Bielenberg, D. G., B. Rauh, S. Fan, K. Gasic, A. G. Abbott, et al., 2015. Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch]. PLOS ONE 10: e0139406.
Boissot, N., S. Thomas, N. Sauvion, C. Marchal, C. Pavis, et al., 2010. Mapping and validation of QTLs for resistance to aphids and whiteflies in melon. Theoretical and Applied Genetics 121: 9-20.
Broman, K. W., H. Wu, S. Sen and G. A. Churchill. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, et al., 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 1-9.
Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
Cuevas, H. E., J. E. Staub, P. W. Simon and J. E. Zalapa. 2009a. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theoretical and Applied Genetics 119: 741-756.
Cuevas, H. E., J. E. Staub, P. W. Simon and J. E. Zalapa. 2009b. A consensus linkage map identifies genomics regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet 119: 741-756.
Cuevas, H. E., J. E. Staub, P. W. Simon, J. E. Zalapa and J. D. McCreight. 2008. Mapping of genetic loci that regulate quantity of beta-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theoretical and Applied Genetics 117: 1345-1359.
Díaz, A., B. Zarouri, M. Fergany, I. Eduardo, J. M. Álvarez, et al., 2014. Mapping and Introgression of QTL Involved in Fruit Shape Transgressive Segregation into ‘Piel de Sapo’ Melon (Cucucumis melo L.). PLOS ONE 9: e104188.
Deleu, W., C. Esteras, C. Roig, M. González-To, I. Fernández-Silva, et al., 2009. A set of EST-SNPs for map saturation and cultivar identification in melon. Bmc Plant Biology 9: 90.
Diaz, A., M. Fergany, G. Formisano, P. Ziarsolo, J. Blanca, et al., 2011. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis meloL.). Bmc Plant Biology 11: 1-14.
Diaz, A., J. Forment, J. M. Argyris, N. Fukino, G. Tzuri, et al., 2015. Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Molecular Breeding 35.
Edae, E. A., R. L. Bowden and J. Poland. 2015. Application of Population Sequencing (POPSEQ) for Ordering and Imputing Genotyping-by-Sequencing Markers in Hexaploid Wheat. G3-Genes Genomes Genetics 5: 2547-2553.
Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, et al., 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLOS ONE 6.
Esteras, C., G. Formisano, C. Roig, A. Díaz, J. Blanca, et al., 2013. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics 126: 1285-1303.
Fang, L., X. Yong, Z. Yue, C. Di, F. JianMing, et al., 2009. Construction of permanent genetic map and comparative analysis of Xinjiang Hami melon [Cucumis melo L. ssp. melo convar. ameri (Pang.) Greb.]. Acta Horticulturae Sinica 36: 1767-1774.
FAOSTST. 2011. Food and Agriculture Organization of the United Nations (http://faostat.fao.org/).
Fernandez-Silva, I., I. Eduardo, J. Blanca, C. Esteras, B. Picó, et al., 2008. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics 118: 139-150.
Fernandez-Silva, I., E. Moreno, A. Essafi, M. Fergany, J. Garcia-Mas, et al., 2010. Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theoretical and Applied Genetics 121: 931-940.
Fukino, N., T. Ohara, A. J. Monforte, M. Sugiyama, Y. Sakata, et al., 2008. Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theoretical and Applied Genetics 118: 165-175.
Garcia-Mas, J., A. Benjak, W. Sanseverino, M. Bourgeois, G. Mir, et al., 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences 109: 11872-11877.
Gardner, K. M., P. Brown, T. F. Cooke, S. Cann, F. Costa, et al., 2014. Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing. G3: Genes|Genomes|Genetics 4: 1681-1687.
Glaubitz, J. C., T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire, et al., 2014. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLOS ONE 9: e90346.
Haley, C. S. and S. A. Knott. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.
Harel-Beja, R., G. Tzuri, V. Portnoy, M. Lotan-Pompan, S. Lev, et al., 2010. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics 121: 511-533.
Hu, J., P. Wang, Y. Su, R. Wang, Q. Li, et al., 2015. Microsatellite Diversity, Population Structure, and Core Collection Formation in Melon Germplasm. Plant Molecular Biology Reporter 33: 439-447.
Huang, X., Q. Feng, Q. Qian, Q. Zhao, L. Wang, et al., 2009. High-throughput genotyping by whole-genome resequencing. Genome Research 19: 1068-1076.
Huang, Y. F., J. A. Poland, C. P. Wight, E. W. Jackson and N. A. Tinker. 2014. Using Genotyping-By-Sequencing (GBS) for Genomic Discovery in Cultivated Oat. PLOS ONE 9: e102448.
Jeffrey, C., 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81: 233-247.
Kerje, T. and M. Grum. 2000. The origin of melon, Cucumis melo: a review of the literature.
Lee, J., N. K. Izzah, B.-S. Choi, H. J. Joh, S.-C. Lee, et al., 2016. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Research 23: 29-41.
Leida, C., C. Moser, C. Esteras, R. Sulpice, J. E. Lunn, et al., 2015. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics 16: 28.
Lester, G., 1997. Melon (Cucumis melo L.) Fruit Nutritional Quality and Health Functionality. HortTechnology 7: 222-227.
Li, H., S. Hearne, M. Banziger, Z. Li and J. Wang. 2010. Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105: 257-267.
McCallum, S., J. Graham, L. Jorgensen, L. J. Rowland, N. V. Bassil, et al., 2016. Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing. Molecular Breeding 36: 1-24.
Nimmakayala, P., Y. R. Tomason, V. L. Abburi, A. Alvarado, T. Saminathan, et al., 2016. Genome-Wide Differentiation of Various Melon Horticultural Groups for Use in GWAS for Fruit Firmness and Construction of a High Resolution Genetic Map. Frontiers in Plant Science 7.
Oliver, M., J. Garcia-Mas, M. Cardús, N. Pueyo, A. I. López-Sesé, et al., 2001. Construction of a reference linkage map for melon. Genome 44: 836-845.
Périn, C., L. Hagen, V. De Conto, N. Katzir, Y. Danin-Poleg, et al., 2002. A reference map of Cucumis melo based on two recombinant inbred line populations. Theoretical and Applied Genetics 104: 1017-1034.
Paradis, E., J. Claude and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20: 289-290.
Pavan, S., A. R. Marcotrigiano, E. Ciani, R. Mazzeo, V. Zonno, et al., 2017. Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics 18: 59.
Perin, C., L. S. Hagen, N. Giovinazzo, D. Besombes, C. Dogimont, et al., 2002. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266.
Pitrat, M., 2008. Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae pp. 283-315. in Melon. edited by J. Prohens and F. Nuez. Springer New York.
Poland, J. A., P. J. Brown, M. E. Sorrells and J.-L. Jannink. 2012. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLOS ONE 7: e32253.
Ramamurthy, R. K. and B. M. Waters. 2015. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204: 163-177.
Sebastian, P., H. Schaefer, I. R. H. Telford and S. S. Renner. 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences 107: 14269-14273.
Spindel, J., M. Wright, C. Chen, J. Cobb, J. Gage, et al., 2013. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoretical and Applied Genetics 126: 2699-2716.
Stange, M., H. F. Utz, T. A. Schrag, A. E. Melchinger and T. Würschum. 2013. High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theoretical and Applied Genetics 126: 2563-2574.
Stepansky, A., I. Kovalski and R. Perl-Treves. 1999. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Systematics and Evolution 217: 313-332.
Swarts, K., H. Li, J. A. Romero Navarro, D. An, M. C. Romay, et al., 2014. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. The Plant Genome 7.
Taylor, D. R. and P. K. Ingvarsson. 2003. Common Features of Segregation Distortion in Plants and Animals. Genetica 117: 27-35.
Taylor, J. and D. Butler. (2015). ASMap: Linkage Map Construction using the MSTmap Algorithm (Version R package version 0.4-5). Retrieved from http://CRAN.R-project.org/package=ASMap
Tzuri, G., X. Zhou, N. Chayut, H. Yuan, V. Portnoy, et al., 2015. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). The Plant Journal 82: 267-279.
van Os, H., P. Stam, R. G. F. Visser and H. J. van Eck. 2005. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theoretical and Applied Genetics 112: 187-194.
Wang, Y.-H., D.-H. Wu, J.-H. Huang, S.-J. Tsao, K.-K. Hwu, et al., 2016. Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Botanical Studies 57: 1-12.
Warnes, G., G. Gorjanc, F. Leisch and M. Man. 2013. genetics: Population Genetics.
Wu, Y., P. R. Bhat, T. J. Close and S. Lonardi. 2008. Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. PLOS Genetics 4: e1000212.
Yu, H., W. Xie, J. Wang, Y. Xing, C. Xu, et al., 2011. Gains in QTL Detection Using an Ultra-High Density SNP Map Based on Population Sequencing Relative to Traditional RFLP/SSR Markers. PLOS ONE 6: e17595.
Zhang, G., Y. Ren, H. Sun, S. Guo, F. Zhang, et al., 2015. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics 16: 1-13.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59324-
dc.description.abstract測序基因分型(GBS)技術雖然能以低成本有效率地產生大量分子標幟,但是使用上受限於其潛在的錯誤序列資訊以及高比例的缺值。我們在本研究中使用GBS技術獲得109個甜瓜(Cucumis melo L.)重組自交系之大量單一核苷酸多型性(SNP)資訊,並將這些SNP分子標幟依據其在參考基因體序列DHL92上的物理位置排列。藉由調查SNP分子標幟彼此間的連鎖關係,我們發現有多個物理圖譜的片段與連鎖關係之調查結果相抵觸。剔除有明顯錯誤的SNP位點後,我們挑選出4,110個高可信度的SNP位點作為比對基準,對其餘的SNP位點進行獨立性檢定,通過檢定的分子標幟再使用軟體TASSEL 5.2內建的Full-Sib Family Haplotype (FSFHap) 演算法填補缺值。最終獲得共22,933個SNP位點,其平均缺值率為0.281%。以此最終產出之基因型資料建立連鎖圖譜,連鎖圖譜共涵蓋12條染色體,總長共1,088.3 cM,而分子標幟間的最大間距為6.0 cM。利用此連鎖圖譜我們成功地定位到多個已知控制果實性狀的數量性狀基因座(QTLs),此結果也驗證了我們採用的資料處理流程之可行性。此外對於64個收集系的遺傳分析顯示存在著明顯的族群結構且收集系的遺傳分群與瓜果外觀型態存在著關聯性。連鎖失衡衰退的分析顯示在兩個收集系分群中有著不同的連鎖失衡衰退速度。本研究顯示GBS技術確實可以有效地應用於定位甜瓜的QTLs上,另外也有助於對甜瓜的基因體結構做更進一步的研究。zh_TW
dc.description.abstractAlthough genotyping-by-sequencing (GBS) enables the efficient and low-cost generation of large numbers of markers, the utility of resultant genotypes are limited, because they are enormously error-prone and contain high proportions of missing data. In this study, we generated single nucleotide polymorphism (SNP) markers for 109 recombinant inbred lines (RILs) of melon (Cucumis melo L.) using the GBS approach and ordered them according to their physical position on the draft double haploid line DHL92 genome. Next, by investigating associations between these SNPs, we discovered that some segments on the physical map conflict with linkage relationships. Therefore, to filter out error-prone loci, 4,110 SNPs in which we have a high degree of confidence were selected as anchors to test independence with respect to unselected markers, and missing data in the resultant dataset was then filled in using the Full-sib Family Haplotype (FSFHap) algorithm in the software TASSEL 5.2. On the basis of this analysis, 22,933 loci that have an average rate of missing data of 0.281% were used to construct a genetic map, which spans 1,088.3 cM across 12 chromosomes and has a maximum spacing of 6.0 cM. Use of this high-quality linkage map enabled the identification of several quantitative trait loci (QTL) known to control traits in fruit and validated our approach. The genetic analysis of 64 other diverse accessions showed the strong population structure and also the association between genetic groups and the types of fruit appearance in melon collection. The results of linkage disequilibrium (LD) suggested that the different level of LD decay existed in two subgroups of accessions. This study highlights the utility of GBS markers for the identification of trait-associated QTLs in melon and facilitates further investigation of genome structure.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:20:30Z (GMT). No. of bitstreams: 1
ntu-106-R04621107-1.pdf: 4855060 bytes, checksum: a4f9e959f5a1ee917d5b5b0f25d584ed (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAcknowledgement ……………………………………………………………………I
Abstract ………………………………………………………………………………II
Table of content …………………..……………………….……………………V
Index of figures ………......………………………………………………………VI
Index of tables ………………………………………………………………..……VII
Introduction …………………………………………………………………………1
Materials and methods ………………………………………………………………6
Results ……………………………………………………………………..………15
Discussion …………………………………………………………………………24
Reference ……………………………………………………………………………33
Figures ………………………………………………………………………………38
Tables …………………………………………………………….…………………56
dc.language.isoen
dc.title利用測序基因分型建立甜瓜高密度連鎖圖譜zh_TW
dc.titleConstruction of a High-Density Genetic Map for Melon (Cucumis melo L.) Using Genotyping-by-Sequencingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖振鐸(Chen-Tuo Liao),胡凱康(Kae-Kang Hwu),黃永芬(Yung-Fen Huang)
dc.subject.keyword甜瓜,GBS,SNP,高密度連鎖圖譜,族群結構,連鎖失衡,zh_TW
dc.subject.keywordMelon (Cucumis melo L.),Genotyping by sequencing (GBS),Single nucleotide polymorphism (SNP),High density genetic map,Population structure,linkage disequilibrium,Germplasm,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201701208
dc.rights.note有償授權
dc.date.accepted2017-07-03
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved