Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59307
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾顯雄,劉瑞芬,李宗徽
dc.contributor.authorPo-Wei Yuen
dc.contributor.author余浡維zh_TW
dc.date.accessioned2021-06-16T09:20:05Z-
dc.date.available2022-07-07
dc.date.copyright2017-07-07
dc.date.issued2017
dc.date.submitted2017-07-03
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59307-
dc.description.abstract牛樟芝(Antrodia cinnamomea)是台灣特有真菌,其子實體在民間被廣泛應用於醫療用途,如降低膽固醇、消炎鎮痛、抗癌以及保肝等。除了牛樟芝豐富的三萜類代謝物之外,其所生成的安卓奎諾爾(Antroquinonol)相關衍生物在抗癌及免疫方面的藥用潛力亦為人所熟知。然而,牛樟芝相關的研究多聚焦在其藥用活性及天然物化學,而對天然物生合成路徑及相關基因功能則較無著墨。由化學結構來看,安卓奎諾爾等產物的環己烯酮部分與芳香族聚酮化合物相似,本研究遂以聚酮合成酶(PKS)基因為標的進行後續探討。由已建構的牛樟芝基因體資料庫搜尋,我們界定了四個可能的聚酮合成酶基因,包括三個還原型聚酮合成酶和一個非還原性聚酮合成酶。我們利用原生質體的製備以及同源置換方式建立了適用於牛樟芝的基因操作平台,並成功剔除標的非還原型聚酮合成酶基因pks63787。實驗結果顯示,與野生株相比,不具pks63787的突變株(Δpks63787)無法產生苯環類代謝物,進而影響其抗氧化能力以及外觀菌落型態。另一方面,我們利用類緣關係的分析指出PKS63787應屬於苔蘚酸(orsellinic acid)合成酶,並藉由後續實驗探討苔蘚酸於牛樟芝代謝物生合成所扮演的角色。結果顯示,苔蘚酸的添加不僅可以恢復Δpks63787外部形態色素特徵的缺失,且補全,甚至提高其苯環類產物及安卓奎諾爾的生合成量,證實安卓奎諾爾的環己烯酮部分的確是由PKS63787所合成的聚酮化合物。另外,在分析PKS63787和苔蘚酸相關化合物組成的同時,我們發現了六個新化合物,包括兩種苯酚1、2,兩種安卓奎諾爾3、4和兩種馬來酰亞胺類化合物5、6。總結以上,我們的研究有助於擔子菌類聚酮合成酶的功能解析以及對牛樟芝中苔蘚酸衍生物和安卓奎諾爾生合成的了解,而所建立的基因操作平台亦有利於以牛樟芝及其他擔子菌的天然物相關基因研究。zh_TW
dc.description.abstractAntrodia cinnamomea is a unique resupinate basidiomycete endemic to Taiwan. Besides the abundant triterpenoid metabolites, A. cinnamomea is known for producing antroquinonols, which were reported to have notable medicinal potential in oncology and immunology. However, neither the biosynthetic pathway of these compounds nor the corresponding genes are currently clear. To investigate the biosynthesis of antroquinonols in A. cinnamomea, we focused on the polyketide synthase (PKS) genes due to the similar structure of the cyclohexenone moiety of antroquinonols to the aromatic polyketide. Four putative PKS genes, including three reducing PKSs and one non-reducing PKS, pks63787, were characterized in A. cinnamomea based on the partially deciphered genome and the constructed fosmid library. For the first time, a gene disruption platform was established in A. cinnamomea via a protoplast-mediated transformation system. Our study showed that the pks63787 knock-out mutant of A. cinnamomea (∆pks63787) is deficient in the biosynthesis of several aromatic metabolites which are involved in the antioxidant activity and colony morphology. In the further study, we pointed out by phylogenetic analysis that pks63787 likely encodes an orsellinic acid synthase, whose function was double-confirmed with a complementary feeding test. The amendment of orsellinic acid not only restores the ability of ∆pks63787 in producing its deficient pigment, benzenoids and antroquinonols, but also enhances the productivity of several antroquinonols. These results provide direct evidence that the PKS63787 is involved in the biosynthesis of antroquinonols, and supported our hypothesis that the cyclohexenone moiety is a polyketide synthesized via the PKS63787-conducted polyketide pathway. Along with the identification of numerous PKS63787- and orsellinic acid-mediated components, six compounds, including two benzenoids 1, 2, two antroquinonols 3, 4 and two antrocinnanoates 5, 6, were reported for the first time. In conclusion, our study has contributed to the understanding of the PKS genes and the biosynthesis of antroquinonols in A. cinnamomea, and the adopted procedure may be conducive to genetics research focusing on natural products in A. cinnamomea and other basidiomycetes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:20:05Z (GMT). No. of bitstreams: 1
ntu-106-F99633015-1.pdf: 34473206 bytes, checksum: b2049d14a5772545fdfa0e2f05fb4f01 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAcknowledgments i
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xiii
LIST OF TABLES xvii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Objectives 5
Chapter 2 Literature Review 7
2.1 Antrodia cinnamomea 7
2.1.1 Introduction and Taxonomic Status 7
2.1.2 Biological Activities and Chemical Constituents 9
2.2 Polyketide and Polyketide Synthases 17
2.2.1 Polyketide Synthesis 19
2.2.2 Type of Polyketide Synthase 21
2.2.3 Fungal Polyketide Synthases 24
2.3 Strategies for Investigating of Fungal Biosynthetic Pathways 31
2.3.1 Characterization of Biosynthetic Genes in Native Hosts 31
2.3.2 Characterization of Biosynthetic Genes in Heterologous Hosts 33
Chapter 3 Material and Methods 37
3.1 General Experimental Procedures 37
3.2 Fungal Strain and Culture 37
3.2.1 Antrodia cinnamomea and Its Monokaryotic Strains 37
3.2.2 Cultures for Sub-Culturing and Long-Term Storage 38
3.2.3 Cultures Used for OSMAC Strategy 39
3.3 Isolation of Genomic DNA and RNA 40
3.3.1 Extraction of Genomic DNA 40
3.3.2 Extraction of Total RNA 41
3.3.3 Denature Gel Electrophoresis and cDNA preparation 42
3.4 Screening of Polyketide Synthases in A. cinnamomea 42
3.4.1 Probe Design and Preparation 42
3.4.2 Fosmid Hybridization 43
3.4.3 Fosmid Sequencing and Primer Walking 44
3.5 Rapid Amplification of cDNA Ends (RACE) 47
3.5.1 RACE Ready cDNA Preparation 47
3.5.2 5′-RACE for pks54821, pks62596, pks62779 and pkps63787 47
3.5.3 3′-RACE for pks54821, pks62596, pks62779 and pks63787 48
3.6 Cloning and Characterization of PKS Genes 49
3.6.1 Amplification of Genomic DNA and cDNA of the PKSs 49
3.6.2 Characterization of the PKS Genes 50
3.6.3 Physical Clustering Analysis of PKS genes in A. cinnamomea 50
3.7 Aspergillus nidulans Expression System 51
3.7.1 Construction of Expression Cassette 51
3.7.2 Transformation of PKS genes from A. cinnamomea 51
3.7.3 Selection and Analysis of Positive Transformants in A. nidulans 52
3.8 Phylogenetic Analysis 53
3.9 Gene Manipulating in A. cinnamomea 59
3.9.1 DAPI staining 59
3.9.2 Effect of Physical-Chemical Parameters 59
3.9.3 Protoplasting of A. cinnamomea 60
3.9.4 PEG-transformation of PKS genes in A. cinnamomea 61
3.10 Generation of pks63787 Knock-Out Mutant 61
3.10.1 Construction of Transformation Cassette 61
3.10.2 PCR and Southern Hybridization Verification 62
3.11 Extraction and Analysis of Secondary Metabolites 63
3.11.1 Extraction of Secondary Metabolites 63
3.11.2 HPLC Analysis of Secondary Metabolites 63
3.11.3 Comparative Analysis of Metabolites with OSMAC strategy 64
3.11.4 Quantitative Analysis of Antroquinonols 64
3.11.5 Free Radical Scavenging Activity 65
3.12 Isolation and Elucidation of Secondary Metabolites 65
3.12.1 Isolation of the Metabolites from PDA Culture 65
3.12.2 Isolation of the Metabolites from MDSB Broth Culture 66
3.12.3 Isolation of the Metabolites from MDSY Culture 67
3.12.4 Physical Data of New Compounds 68
Chapter 4 Polyketide Synthase in A. cinnamomea 73
4.1 Analysis of the Genomic and cDNA Libraries 73
4.2 Screening of PKS Genes from the Fosmid Library 75
4.3 Characterization of PKS Genes in A. cinnamomea 78
4.3.1 Characterization of pks54821 78
4.3.2 Characterization of pks62596 79
4.3.3 Characterization of pks62779 80
4.3.4 Characterization of pks63787 82
4.3.5 The Expression of PKS genes 83
4.4 Physical Clustering Genes of the PKS-encoding Genes 84
4.5 Discussion 89
Chapter 5 Protoplasting of A. cinnamomea and Functional Characterization of pks63787 93
5.1 Preliminary Test for Gene Manipulation 93
5.2 Protoplasting of Antrodia cinnamomea 95
5.3 Generation of pks63787 Disruption Mutant (∆pks63787) 97
5.4 Comparison of Antioxidant Activity 100
5.5 Analysis of the PKS63787-Related Components 102
5.6 Discussion 104
Chapter 6 Phylogenetic Analysis of PKS63787 and Other PKSs in A. cinnamomea 111
6.1 Phylogenetic Analysis of the PKSs in A. cinnamomea 112
6.2 Phylogenetic Analysis of the NR-PKS PKS63787 117
6.2.1 KS Domain 117
6.2.2 KS-AT Domains 119
6.2.3 SAT Domain 123
6.2.4 PT Domain 125
6.3 Discussion 128
Chapter 7 Orsellinic Acid and the Biosynthesis of Antroquinonols in A. cinnamomea 131
7.1 Detection of Antroquinonols from A. cinnamomea 132
7.2 The Deficiency of Antroquinonols in ∆pks63787 133
7.3 Complementary Test with Orsellinic Acid 136
7.3.1 Complementation of Morphological Feature 136
7.3.2 Complementary Metabolic Profiles 137
7.3.3 Production of Antroquinonols 138
7.4 Discussion 140
Chapter 8 The PKS63787- and Orsellinic Acid-Mediated Metabolites 147
8.1 The Analysis of Chemical Products in A. cinnamomea 148
8.2 Compound Elucidation 153
8.2.1 5-Hydroxy-1,4-Dimethoxy-2,3-methylenedioxytoluene (1) 153
8.2.2 1,3-Dihydroxy-2,4-dimethoxy-6-methoxymethylbenzene (2) 157
8.2.3 Antroquinonol L (3) 162
8.2.4 Antroquinonol M (4) 166
8.2.5 Antrocinnanoate A (5) 170
8.2.6 Antrocinnanoate B (6) 175
8.3 Discussion 179
Chapter 9 Conclusion 185
REFERENCES 187
APPENDIX 221
dc.language.isoen
dc.title牛樟芝聚酮合成酶基因的功能界定及其相關生合成路徑探討zh_TW
dc.titleFunctional Characterization of Polyketide Synthase-encoding Genes and the Related Biosynthetic Pathway in Antrodia cinnamomeaen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭悅雄,張雅君,鍾嘉綾,林乃君
dc.subject.keyword牛樟芝,酮合成?,生合成,苔蘚酸,安卓奎諾爾,zh_TW
dc.subject.keywordAntrodia cinnamomea,polyketide synthase,biosynthesis,orsellinic acid,antroquinonol,en
dc.relation.page262
dc.identifier.doi10.6342/NTU201701259
dc.rights.note有償授權
dc.date.accepted2017-07-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
33.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved