Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59217
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorYi-Fang Kuoen
dc.contributor.author郭亦方zh_TW
dc.date.accessioned2021-06-16T09:18:04Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-15
dc.identifier.citation1. Tabassum, S. and F.R. Khan, Failure of endodontic treatment: The usual suspects. European journal of dentistry, 2016. 10(01): p. 144-147.
2. Cantatore, G., E. Berutti, and A. Castellucci, Missed anatomy: frequency and clinical impact. Endodontic Topics, 2006. 15(1): p. 3-31.
3. Hoen, M.M. and F.E. Pink, Contemporary endodontic retreatments: an analysis based on clinical treatment findings. Journal of endodontics, 2002. 28(12): p. 834-836.
4. IqbAl, A., The factors responsible for endodontic treatment failure in the permanent dentitions of the patients reported to the college of dentistry, the University of Aljouf, Kingdom of Saudi Arabia. Journal of clinical and diagnostic research: JCDR, 2016. 10(5): p. ZC146.
5. Coelho, M.S., et al., Locating the second mesiobuccal canal in maxillary molars: challenges and solutions. Clinical, cosmetic and investigational dentistry, 2018. 10: p. 195.
6. Wolcott, J., et al., A 5 yr clinical investigation of second mesiobuccal canals in endodontically treated and retreated maxillary molars. Journal of endodontics, 2005. 31(4): p. 262-264.
7. Martínez-Lozano, M.Á., L. Forner-Navarro, and J.L. Sánchez-Cortés, Analysis of radiologic factors in determining premolar root canal systems. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1999. 88(6): p. 719-722.
8. Liang, R., Y. Wu, and M. Hu, Diagnostic test study of dental operating microscope used for locating the second mesiobuccal canal orifice in maxillary first molars. Hua xi kou qiang yi xue za zhi= Huaxi kouqiang yixue zazhi= West China journal of stomatology, 2007. 25(2): p. 125-128.
9. Plotino, G., et al., Ultrasonics in endodontics: a review of the literature. Journal of endodontics, 2007. 33(2): p. 81-95.
10. Patel, S., et al., European Society of Endodontology position statement: the use of CBCT in endodontics. International endodontic journal, 2014. 47(6): p. 502-504.
11. Kiljunen, T., et al., Dental cone beam CT: A review. Physica Medica, 2015. 31(8): p. 844-860.
12. Patel, S., et al., New dimensions in endodontic imaging: part 1. Conventional and alternative radiographic systems. International endodontic journal, 2009. 42(6): p. 447-462.
13. Cohen, S., et al., Pathways of the Pulp (1). Learning, 1998. 30: p. 10.
14. Matherne, R.P., et al., Use of cone-beam computed tomography to identify root canal systems in vitro. Journal of endodontics, 2008. 34(1): p. 87-89.
15. Forsberg, J. and A. Halse, Radiographic simulation of a periapieal lesion comparing the paralleling and the bisecting‐angle techniques. International Endodontic Journal, 1994. 27(3): p. 133-138.
16. Lofthag-Hansen, S., et al., Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2007. 103(1): p. 114-119.
17. Webber, R.L. and J.K. Messura, An in vivo comparison of diagnostic information obtained from tuned-aperture computed tomography and conventional dental radiographic imaging modalities. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1999. 88(2): p. 239-247.
18. Nance, R., et al., Identification of root canals in molars by tuned‐aperture computed tomography. International endodontic journal, 2000. 33(4): p. 392-396.
19. Barton, D.J., et al., Tuned-aperture computed tomography versus parallax analog and digital radiographic images in detecting second mesiobuccal canals in maxillary first molars. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2003. 96(2): p. 223-228.
20. Shah, N., N. Bansal, and A. Logani, Recent advances in imaging technologies in dentistry. World journal of radiology, 2014. 6(10): p. 794.
21. Whaites, E. and N. Drage, Essentials of dental radiography and radiology. 2013: Elsevier Health Sciences.
22. Goto, T.K., et al., The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2007. 103(4): p. 550-559.
23. Cotti, E., et al., Ultrasound real‐time imaging in the differential diagnosis of periapical lesions. International endodontic journal, 2003. 36(8): p. 556-563.
24. Brooks, S.L., Computed tomography. Dental Clinics of North America, 1993. 37(4): p. 575-590.
25. White, S.C. and M. Pharoah, Dental anomalies: Oral radiology: Principles and interpretation. 2004, Mosby New York.
26. Trope, M., et al., Differentiation of radicular cyst and granulomas using computerized tomography. Dental Traumatology, 1989. 5(2): p. 69-72.
27. Youssefzadeh, S., et al., Dental vertical root fractures: value of CT in detection. Radiology, 1999. 210(2): p. 545-549.
28. Robinson, S., et al., Dental CT evaluation of mandibular first premolar root configurations and canal variations. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2002. 93(3): p. 328-332.
29. Velvart, P., H. Hecker, and G. Tillinger, Detection of the apical lesion and the mandibular canal in conventional radiography and computed tomography. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2001. 92(6): p. 682-688.
30. Mozzo, P., et al., A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. European radiology, 1998. 8(9): p. 1558-1564.
31. Scarfe, W., et al., Maxillofacial cone beam computed tomography: essence, elements and steps to interpretation. Australian dental journal, 2012. 57: p. 46-60.
32. Jaju, P.P., Dental CT third eye in dental implants. 2012: JP Medical Ltd.
33. Scarfe, W.C. and A.G. Farman, Cone beam computed tomography: a paradigm shift for clinical dentistry. 2007.
34. Scarfe, W.C. and A.G. Farman, What is cone-beam CT and how does it work? Dental Clinics of North America, 2008. 52(4): p. 707-730.
35. Statement, A.a.A.J.P., Use of Cone Beam Computed Tomography in Endodontics—2015/2016 Update.
36. Patel, S., et al., The potential applications of cone beam computed tomography in the management of endodontic problems. International endodontic journal, 2007. 40(10): p. 818-830.
37. Pauwels, R., et al., Technical aspects of dental CBCT: state of the art. Dentomaxillofacial Radiology, 2015. 44(1): p. 20140224.
38. Kwong, J.C., et al., Image quality produced by different cone-beam computed tomography settings. American journal of orthodontics and dentofacial orthopedics, 2008. 133(2): p. 317-327.
39. Pauwels, R., et al., Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofacial Radiology, 2015. 44(9): p. 20150108.
40. Patel, S., et al., Cone beam computed tomography in Endodontics–a review of the literature. International endodontic journal, 2019. 52(8): p. 1138-1152.
41. Smith, J.W., Calcific metamorphosis: a treatment dilemma. Oral Surgery, Oral Medicine, Oral Pathology, 1982. 54(4): p. 441-444.
42. Endodontology, E.S.o., Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. International Endodontic Journal, 2006. 39(12): p. 921-930.
43. Matsumoto, T., et al., Factors affecting successful prognosis of root canal treatment. Journal of endodontics, 1987. 13(5): p. 239-242.
44. Amir, F.A., J.L. Gutmann, and D. E Witherspoon, Calcific metamorphosis: a challenge in endodontic diagnosis and treatment. Quintessence international, 2001. 32(6).
45. Paper, A.S.C.t.D.a.M.P., AAE Position Statement. Use of microscopes and other magnification techniques. Journal of endodontics, 2012. 38(8): p. 1153.
46. Flügge, T.V., et al., Three-dimensional plotting and printing of an implant drilling guide: simplifying guided implant surgery. Journal of Oral and Maxillofacial Surgery, 2013. 71(8): p. 1340-1346.
47. Buchgreitz, J., et al., Guided access cavity preparation using cone‐beam computed tomography and optical surface scans–an ex vivo study. International endodontic journal, 2016. 49(8): p. 790-795.
48. Zehnder, M., et al., Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location. International endodontic journal, 2016. 49(10): p. 966-972.
49. Krastl, G., et al., Guided endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dental traumatology, 2016. 32(3): p. 240-246.
50. Van Der Meer, W.J., et al., 3D computer aided treatment planning in endodontics. Journal of dentistry, 2016. 45: p. 67-72.
51. Sônia, T.d.O., et al., Guided endodontic access in maxillary molars using cone-beam computed tomography and computer-aided design/computer-aided manufacturing system: a case report. Journal of endodontics, 2018. 44(5): p. 875-879.
52. Buchanan, L.S., Dynamic CT-Guided Endodontic Access Procedures. Dent Edu Lab, 2018.
53. Zinreich, S.J., et al., Frameless stereotaxic integration of CT imaging data: accuracy and initial applications. Radiology, 1993. 188(3): p. 735-742.
54. Rodt, T., et al., Placement of intraventricular catheters using flexible electromagnetic navigation and a dynamic reference frame: a new technique. Stereotactic and functional neurosurgery, 2007. 85(5): p. 243-248.
55. Grunert, P., et al., Computer-aided navigation in neurosurgery. Neurosurgical review, 2003. 26(2): p. 73-99.
56. Bouchard, C., et al., Osteomark: a surgical navigation system for oral and maxillofacial surgery. International journal of oral and maxillofacial surgery, 2012. 41(2): p. 265-270.
57. Gaggl, A. and G. Schultes, Assessment of accuracy of navigated implant placement in the maxilla. International Journal of Oral Maxillofacial Implants, 2002. 17(2).
58. Stefanelli, L.V., et al., Accuracy of a Dynamic Dental Implant Navigation System in a Private Practice. International Journal of Oral Maxillofacial Implants, 2019. 34(1).
59. Panchal, N., et al., Dynamic Navigation for Dental Implant Surgery. Oral and Maxillofacial Surgery Clinics, 2019. 31(4): p. 539-547.
60. Benjamin, A. and N. Phadnis, Dynamic Implant Navigation Systems: A Review. World Journal of Advanced Scientific Research, 2018. 1: p. 117-122.
61. Gambarini, G., et al., Endodontic microsurgery using dynamic navigation system: a case report. Journal of Endodontics, 2019. 45(11): p. 1397-1402. e6.
62. Clark, D. and J. Khademi, Modern molar endodontic access and directed dentin conservation. Dental Clinics, 2010. 54(2): p. 249-273.
63. Onken, M., et al., Digital imaging and communications in medicine, in Biomedical Image Processing. 2010, Springer. p. 427-454.
64. Versteeg, C., et al., Reduction in size of digital images: does it lead to less detectability or loss of diagnostic information? Dentomaxillofacial Radiology, 1998. 27(2): p. 93-96.
65. Zarb, F., L. Rainford, and M.F. McEntee, Image quality assessment tools for optimization of CT images. Radiography, 2010. 16(2): p. 147-153.
66. Hayes, A.F. and K. Krippendorff, Answering the call for a standard reliability measure for coding data. Communication methods and measures, 2007. 1(1): p. 77-89.
67. Dhond, U.R. and J.K. Aggarwal, Structure from stereo-a review. IEEE transactions on systems, man, and cybernetics, 1989. 19(6): p. 1489-1510.
68. Krebs, B., P. Sieverding, and B. Korn. A fuzzy ICP algorithm for 3D free-form object recognition. in Proceedings of 13th International Conference on Pattern Recognition. 1996. IEEE.
69. Winkelbach, S., S. Molkenstruck, and F.M. Wahl. Low-cost laser range scanner and fast surface registration approach. in Joint Pattern Recognition Symposium. 2006. Springer.
70. Lin, Q., et al., Real-time automatic registration in optical surgical navigation. Infrared Physics Technology, 2016. 76: p. 375-385.
71. Patel, S., et al., The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography–an in vivo investigation. International endodontic journal, 2009. 42(9): p. 831-838.
72. Hassan, B., et al., Comparison of five cone beam computed tomography systems for the detection of vertical root fractures. Journal of endodontics, 2010. 36(1): p. 126-129.
73. Shemesh, H., et al., The use of cone-beam computed tomography and digital periapical radiographs to diagnose root perforations. Journal of endodontics, 2011. 37(4): p. 513-516.
74. Shemesh, H. and N. Cohenca, Clinical applications of cone beam computed tomography in endodontics: a comprehensive review. Quintessence Int, 2015. 46: p. 657-668.
75. Månsson, L., Methods for the evaluation of image quality: a review. Radiation protection dosimetry, 2000. 90(1-2): p. 89-99.
76. Metz, C.E., ROC methodology in radiologic imaging. Investigative radiology, 1986. 21(9): p. 720-733.
77. Blattner, T.C., et al., Efficacy of cone-beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: a pilot study. Journal of endodontics, 2010. 36(5): p. 867-870.
78. Tu, M.-G., et al., Detection of permanent three-rooted mandibular first molars by cone-beam computed tomography imaging in Taiwanese individuals. Journal of endodontics, 2009. 35(4): p. 503-507.
79. Hoff, M.N., et al., Can cephalometric parameters be measured reproducibly using reduced-dose cone-beam computed tomography? Journal of the World Federation of Orthodontists, 2019. 8(2): p. 43-50.
80. Kamburoğlu, K. and S. Kursun, A comparison of the diagnostic accuracy of CBCT images of different voxel resolutions used to detect simulated small internal resorption cavities. International endodontic journal, 2010. 43(9): p. 798-807.
81. Spin-Neto, R., E. Gotfredsen, and A. Wenzel, Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review. Journal of digital imaging, 2013. 26(4): p. 813-820.
82. Ludlow, J., et al., Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofacial Radiology, 2015. 44(1): p. 20140197.
83. Young, S., et al., A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofacial radiology, 2009. 38(7): p. 445-451.
84. Ludlow, J.B., et al., Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofacial Radiology, 2006. 35(4): p. 219-226.
85. Hassan, B., et al., Influence of scan setting selections on root canal visibility with cone beam CT. Dentomaxillofacial Radiology, 2012. 41(8): p. 645-648.
86. Morant, J., et al., Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms. Dentomaxillofacial Radiology, 2013. 42(3): p. 92555893.
87. Zhang, G., et al., Monte Carlo modeling for dose assessment in cone beam CT for oral and maxillofacial applications. Medical physics, 2013. 40(7): p. 072103.
88. de Kinkelder, R., et al., Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina. Investigative ophthalmology visual science, 2011. 52(6): p. 3908-3913.
89. Brüllmann, D.D., et al., Contrast curves of five different intraoral X-ray sensors: a technical note. Oral surgery, oral medicine, oral pathology and oral radiology, 2013. 115(6): p. e55-e61.
90. Nair, M.K. and U.P. Nair, Digital and advanced imaging in endodontics: a review. Journal of endodontics, 2007. 33(1): p. 1-6.
91. Pauwels, R., et al., Comparison of spatial and contrast resolution for cone-beam computed tomography scanners. Oral surgery, oral medicine, oral pathology and oral radiology, 2012. 114(1): p. 127-135.
92. Grieves, M., Digital twin: manufacturing excellence through virtual factory replication. White paper, 2014. 1: p. 1-7.
93. Strong, E.B., et al., Comparison of 3 optical navigation systems for computer-aided maxillofacial surgery. Archives of Otolaryngology–Head Neck Surgery, 2008. 134(10): p. 1080-1084.
94. Zubizarreta-Macho, Á., et al., Accuracy of Computer-Aided Dynamic Navigation Compared to Computer-Aided Static Procedure for Endodontic Access Cavities: An in Vitro Study. Journal of Clinical Medicine, 2020. 9(1): p. 129.
95. Chen, C.-K., et al., Accuracy of Implant Placement with a Navigation System, a Laboratory Guide, and Freehand Drilling. International Journal of Oral Maxillofacial Implants, 2018. 33(6).
96. Block, M.S. and R.W. Emery, Static or dynamic navigation for implant placement—choosing the method of guidance. Journal of Oral and Maxillofacial Surgery, 2016. 74(2): p. 269-277.
97. Schulze, R., et al., Artefacts in CBCT: a review. Dentomaxillofacial Radiology, 2011. 40(5): p. 265-273.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59217-
dc.description.abstract根管治療時,對於複雜的根管型態或鈣化根管的評估,可使用CBCT (Cone-beam computed tomography,錐狀束電腦斷層)輔助診斷,如何在輻射劑量、病人安全與影像清晰度之間取得平衡,是我們要探討的課題。CBCT是良好的診斷工具,可讓牙醫師得知牙齒內部三維的解剖構造,但對於困難的狹窄、鈣化根管,仍希望有一儀器能夠即時呈現器械與牙齒之間的相對關係,進行影像導引。近年已有使用CBCT的電腦輔助手術系統應用於植牙手術,然而定位程序複雜且只能使用大範圍的CBCT,不適用於需要精細影像的根管治療。
本研究第一部份的目的為比較不同參數拍攝的CBCT對影像品質的影響。此部分共分為四個階段,使用有牙齒的乾燥人頭骨上顎第一大臼齒MB2根管 (Second mesiobuccal canal,近心頰側第二根管)為評估目標。第一階段請牙醫師以絕對目視等級分析法(Absolute visual grading analysis, Absolute VGA) 比較14x5 cm-FOV (Field of view, 照射範圍)、6x6 cm-FOV與4x4 cm-FOV MB2根管的清晰度,評分2分代表MB2根管影像清晰對比良好、1分代表MB2根管影像模糊但仍可辨識、0分代表MB2根管無法辨識。第二階段以6x6 cm-FOV,360度與180度拍攝的影像請受過訓練與未受訓練的牙醫師分別測量牙齒咬合面至目標點的距離。第三階段以廠商根管拍攝預設模式(4x4 cm-FOV /5mA/ 180度/ 慢速)為控制組,實驗組為改變旋轉角度(360度、180度)和原廠設定的三種不同掃描速度(快速、標準、慢速),請五名受過訓練的牙醫師以相對目視等級分析法 (Relative VGA)評估MB2根管影像品質:評分2分代表影像品質與預設模式相當,MB2根管清晰可見;評分1分代表MB2根管影像模糊,品質較差;評分0分代表影像品質與預設模式相差甚遠, MB2根管無法辨識。第四階段以預設模式為控制組,實驗組為改變旋轉角度(360度、180度)、掃描速度(快速、標準、慢速)與電流(5 mA、2.5 mA),請五名受過訓練的牙醫師以Relative VGA評估MB2根管影像品質。第二部分的目的為改良應用於定位根管系統的影像導引技術。以口外牙製作模型,基準註冊誤差 (Fiducial registration error, FRE)及定位成功率驗證使用牙齒特徵點(咬頭、凹窩)註冊、線掃描(掃描牙齒咬合面高點連線、掃描牙齒咬合面凹窩連線、掃描牙齒頰舌側表面)註冊的可行性。第三部分篩選出第二部分模型實驗定位成功率佳的組別,進入臨床試驗。
第一部分第一階段結果顯示14x5 cm-FOV不適合用來偵測MB2根管;第二階段6x6 cm-FOV,360度與180度的拍攝參數在偵測MB2根管的能力沒有顯著差異,且須以受過訓練的牙醫師來評估影像品質。第三階段結果顯示5mA/ 180度/ 慢速與預設模式的影像品質評分無差異,慢速模式比起快速、標準模式有較清晰的影像。第四階段結果顯示2.5mA/ 180度/慢速的影像品質評分與預設模式沒有顯著差異,將電流與旋轉角度減半,仍能維持與預設模式相當的影像品質。
第二部分的研究結果顯示使用牙齒的特徵點來定位根管系統是可行的,使用咬頭或凹窩當作特徵點定位的成功率沒有顯著差異;線掃描註冊的部分,路徑沿著牙齒咬合面高點的連線有最高的定位成功率。第三部分臨床試驗,招募15名受試者,排除影像不清晰、金屬散射干擾的三名受試者,共12名受試者納入試驗。結果顯示,在基準註冊誤差方面,臨床試驗與模型實驗使用特徵點註冊沒有顯著差異;臨床試驗與模型實驗使用線掃描註冊沒有顯著差異。在定位成功率方面,臨床使用特徵點註冊的定位成功率較模型實驗差,線掃描註冊的定位成功率則與模型實驗結果相符合。
綜合以上結果,拍攝上顎第一大臼齒MB2根管的CBCT時,欲維持與廠商設模式相同的影像品質,建議使用慢速的掃描模式,但可將預設拍攝電流5 mA降低至2.5 mA,且可將機器旋轉角度360度減半至180度以減少輻射劑量。本研究提出之應用於定位根管系統的影像導引技術,能使用牙齒咬合面高點的連線,以線掃描的方式註冊,且臨床試驗結果與模型實驗相符合,顯示此技術有潛力應用於臨床定位根管系統。
zh_TW
dc.description.abstractDentists use CBCT (Cone-beam computed tomography) to evaluate complicated root canal system during root canal treatment. Finding the balance between radiation dose, patient-safety and acquiring a clear image is of crucial importance and is also an issue worth discussing. Although CBCT can provide three-dimensional images for detecting root canals, there is yet to be a synchronization between the instruments and pictures in real-time. Computer-aided navigation system had been developed and used in implant surgery, but it needs presurgical splints and large FOV (Field of view) CBCT images for registration, which are not suitable for endodontic treatment.
The first part of this study was to compare the image quality of CBCT in detecting the MB2 (the Second mesiobuccal) canal of upper first molar with different image acquisition parameters. In the first section of this part, absolute VGA (visual grading analysis) was used to compare the image quality of MB2 canal in 14x5 cm-FOV, 6x6 cm-FOV and 4x4 cm-FOV. In the second section, two groups of trained and untrained dentists were asked to measure the distance between the occlusal surface of the target tooth to the target point in 6x6 cm-FOV, 360 and 180 -degree CBCT images. In the third and fourth section, we used the CBCT manufacturer’s default setting for root canal treatment as the control group. The goal was to reduce radiation dose by reducing rotation arcs, increasing scanning speed and lowering the tube current. Five trained dentists were asked to use relative VGA with 3 scales (2 as excellent image quality, the MB2 root canal of the first molar was precisely detected and was in good contrast compared to manufacturer’s default setting; 1 as acceptable image quality, the MB2 root canal of the first molar was hazy but still distinguishable; 0 as unacceptable image quality, the MB2 root canal of the first molar was barely detectable) to assess the image quality. The second part of this study was to improve current image tracking systems and to develop novel medical image tracking techniques for dental root canal navigation treatment. We used extracted human teeth as experiment models. FRE (Fiducial registration error) and the percentage of successfully reaching the targets were adopted to verify the feasibility of this novel image tracking technique. Those methods with a superior success rate of reaching the targets were applied to the third part of this research, which was a clinical trial.
Results of the first part showed that the 14x5 cm-FOV was not suitable for locating the MB2 canal. No significant differences between 6x6 cm-FOV, full rotation and half rotation, and that the raters for CBCT image quality should be well-trained. In the third section, 4x4 cm-FOV, 5mA, with two different rotation arcs (360∘and 180∘) and three different scanning modes (fast, standard and slow) combined into six groups. Results showed that images taken with 5mA/ 360∘/ slow speed and 5mA/ 180∘/ slow speed had the same VGA rating, which indicated that slower scanning speed leads to better image quality. Then, we used 4x4 cm-FOV, 5 mA/ 2.5 mA, full rotation/ half rotation and three different scanning speeds combined into 12 groups. Results showed no statically difference between the ratings of 2.5mA/ 180∘/ slow speed group and the manufacturer’s default setting.
Results of the second part of this study showed no difference in choosing cusps or fossae during feature point registration. Tracing the cusps and slopes of the teeth has preferred registration success rate during track scan registration. The FRE was smaller in track scan registration. The third part of this research, which was a clinical trial, involved 15 volunteers, three of them were excluded due to artefacts of CBCT images and the unclearness of CBCT images. Results of the clinical trial showed that the FRE of feature point registration was higher than model experiments but without statically significance. The FRE of track scan registration during clinical trial was higher than model experiments but without statically significance. The surface registration success rate of the feature point registration in the clinical trial was inferior to the model experiment, whilst the surface registration success rate of the track scan registration in the clinical corresponds to model experiments.
Within the limitations of this study, we can conclude that in need of detecting the MB2 canal of upper first molars, to maintain the same image quality compared to manufacturer’s default mode, one should remain slow scanning speed. However, we could lower the tube current from 5 mA to 2.5 mA and could reduce the rotation arc from 360-degree to 180-degree while retaining the same image quality as the manufacturer default mode. The novel image tracking technique developed in this study allowed dentists to use cusps or fossae as feature point registration or scanning registration. The results of the clinical trial matched the model experiments, which indicated that this novel image tracking technique is feasible in locating root canal systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:18:04Z (GMT). No. of bitstreams: 1
U0001-1408202014572500.pdf: 3344449 bytes, checksum: ae71d527d3a772ed906d8273053e250b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 前言 1
第二章 文獻回顧 2
2.1 錯漏根管(Missed Canals) 2
2.2 傳統二維放射線學影像的缺點 2
2.3 三維影像(Three-Dimensional Imaging) 3
2.3.1 Tuned Aperture Computed Tomography (TACT) 3
2.3.2 Magnetic Resonance Imaging (MRI) 4
2.3.3 Ultrasound (US) 4
2.3.4 電腦斷層 Computed Tomography (CT) 4
2.3.5 錐狀束電腦斷層(Cone-beam computed tomography, CBCT) 5
2.4 錐狀束電腦斷層應用於根管治療 6
2.5 影響錐狀束電腦斷層影像品質與輻射劑量的因素 7
2.6 根管鈣化 (Pulp Canal Obliteration, PCO) 8
2.7 導板應用於根管治療 (Guided Endodontics) 9
2.8 光學導航定位系統於醫學上的應用 10
2.9 導航定位系統於牙科的應用 11
第三章 動機與目的 13
第四章 材料與方法 14
4.1 醫學儀器與影像重組軟體 14
4.2 影像拍攝與評分方式 14
4.2.1第一階段:比較在不同FOV中偵測MB2根管的能力 14
4.2.2第二階段:比較不同旋轉角度拍攝的影像,偵測到MB2根管的距離差異 15
4.2.3第三階段:比較全旋轉、半旋轉與三種不同掃描速度的影像品質 16
4.2.4第四階段:減少電流,比較全旋轉、半旋轉與三種不同掃描速度的影像品質 17
4.3 牙科根管導航系統 17
4.3.1導航機器 17
4.3.2探針工具選擇 18
4.4 牙科根管導航系統測試模型之製備 18
4.4.1牙弓模具製作 18
4.4.2真牙模型製作 18
4.4.3 CBCT拍攝 19
4.4.4灌入石膏完成可固定於人頭教具內的模型 19
4.4.5髓腔開擴 19
4.5 操作誤差與定位成功率 19
4.5.1 進行前導實驗以確定註冊器械時探針的手勢 20
4.5.2 Feature Point Registration誤差測量 21
4.5.3 Track Scan Registration誤差測量 21
4.5.4 統計分析 22
4.6 牙科根管導航:臨床測試評估誤差 22
4.6.1 試驗納入條件 22
4.6.2 試驗排除條件 23
4.6.3 試驗進行步驟 23
第五章 結果 24
5.1 調整CBCT拍攝參數對牙齒根管影像品質的影響 24
5.1.1第一階段:比較在不同FOV中偵測MB2根管的能力 24
5.1.2第二階段:比較不同旋轉角度的影像品質 24
5.1.3第三階段:比較全旋轉、半旋轉與三種不同掃描速度的影像品質 26
5.1.4第四階段:減少電流,比較全旋轉、半旋轉與三種不同掃描速度的影像品質 26
5.2 牙科根管導航系統的操作誤差 26
5.2.1前導實驗 26
5.2.2 Feature point registration 的誤差(FRE) 27
5.2.3 Track scan registration 的誤差 (FRE) 27
5.2.4表面定位成功率 28
5.2.5牙髓腔定位成功率 28
5.3 牙科根管導航系統臨床測試 29
5.3.1臨床定位誤差與表面定位成功率 29
5.3.2臨床定位所需時間 29
第六章 討論 30
6.1 使用CBCT定位根管系統 30
6.2 評估CBCT影像品質的方式與評估者的選擇 30
6.3 不同FOV偵測上顎第一大臼齒MB2根管的能力與輻射劑量的差異 31
6.3.1不同FOV拍攝CBCT偵測上顎第一大臼齒MB2根管的能力 32
6.3.2不同FOV輻射劑量的差異 32
6.4 調整CBCT機器旋轉角度與旋轉速度、降低電流對偵測上顎第一大臼齒MB2根管的能力與輻射劑量的差異 33
6.5 牙科根管導航系統定位方式選擇 35
6.5.1進行特徵點註冊時的手勢 36
6.5.2定位方式的選擇 36
6.6 臨床試驗新式影像定位技術 37
第七章 結論 39
第八章 未來研究方向 40
參考文獻 41
附圖 48
附表 63
dc.language.isozh-TW
dc.subject近心頰側第二根管zh_TW
dc.subject根管治療zh_TW
dc.subject影像導引手術zh_TW
dc.subject數位分身zh_TW
dc.subject動態導航zh_TW
dc.subject錐狀束電腦斷層zh_TW
dc.subjectDynamic navigationen
dc.subjectCBCTen
dc.subjectMB2 canalen
dc.subjectRoot canal treatmenten
dc.subjectImage-guided surgeryen
dc.subjectDigital twinen
dc.title分析錐狀束電腦斷層拍攝參數與研發新式影像導引技術應用於定位根管系統
zh_TW
dc.titleAnalyzing CBCT Parameters and Developing Novel Image Tracking Techniques for Locating Root Canal Systemsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),章浩宏(Hao-Hueng Chang),謝明發(Ming-Fa Hsieh),王姻麟(Yin-Lin Wang)
dc.subject.keyword錐狀束電腦斷層,近心頰側第二根管,根管治療,影像導引手術,數位分身,動態導航,zh_TW
dc.subject.keywordCBCT,MB2 canal,Root canal treatment,Image-guided surgery,Digital twin,Dynamic navigation,en
dc.relation.page66
dc.identifier.doi10.6342/NTU202003417
dc.rights.note有償授權
dc.date.accepted2020-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202014572500.pdf
  未授權公開取用
3.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved