Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59209
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善
dc.contributor.authorCheng-Shih Wongen
dc.contributor.author翁丞世zh_TW
dc.date.accessioned2021-06-16T09:17:54Z-
dc.date.available2022-07-17
dc.date.copyright2017-07-17
dc.date.issued2017
dc.date.submitted2017-07-10
dc.identifier.citation[1]. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transactions on Signal Processing, volume 50, No. 2, pp. 174 – 188, 2002.
[2]. B. Babenko, M. H. Yang and S. Belongie, “Visual Tracking with Online Multiple Instance Learning,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami Beach, Florida, pp. 983 – 990, 2009.
[3]. B. Benfold and I. Reid, “Stable Multi-Target Tracking in Real-Time Surveillance Video,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Colorado, pp. 3457 – 3464, 2011.
[4]. M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “Online Multiperson Tracking-By-Detection from a Single, Uncalibrated Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 33, No. 9, pp. 1820 – 1833, 2011.
[5]. D. Comaniciu, V. Ramesh, and P. Meer, “Real-time Tracking of Non-Rigid Objects Using Mean Shift,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, volume 2, pp. 142 – 149, 2000.
[6]. D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 25, No. 5, pp. 564 – 577, 2003.
[7]. N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Diego, California, volume 1, pp. 886 – 893, 2005.
[8] F. F. Li, “CS231n: Convolutional Neural Networks for Visual Recognition,” http://cs231n.github.io/convolutional-networks/, 2017.
[9]. H. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via On-line Boosting,” Proceedings of British Machine Vision Conference, Edinburgh, UK, volume 1, pp. 47 – 56, 2006.
[10]. M. Isard and A. Black, “CONDENSATION – Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, volume 29, No. 5, pp. 5 – 28, 1998.
[11]. Y. Q. Jia, S. Evan, D. Jeff, K. Sergey, L. Jonathan, G. Ross, G. Sergio, and D. Trevor, “Caffe: Convolutional Architecture for Fast Feature Embedding,” arXiv: 1408.5093, https://arxiv.org/pdf/1408.5093.pdf, 2014.
[12]. Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 6, No. 1, pp. 1409 – 1422, 2010.
[13]. A. Krizhevsky, I. Sutskever, and G. E Hinton, “Imagenet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems, pp. 1097 – 1105, 2002.
[14]. N. S. Peng, J. Yang, and Z. Liu, “Mean Shift Blob Tracking with Kernel Histogram Filtering and Hypothesis Testing,” Pattern Recognition Letters, volume 26, No. 5, pp. 605 – 614, 2004.
[15]. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv: 1409.1556, https://arxiv.org/pdf/1409.1556.pdf , 2014.
[16]. Standford Vision Lab, “ImageNet Large Scale Vision Recognition Challenge,” http://www.image-net.org/challenges/LSVRC/, 2017.
[17]. C. Stauffer and W. E. L. Grimson, “Adaptive Background Mixture Models for Real-Time Tracking,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, volume 2, pp. 246 – 252, 1999.
[18]. T. H. Vu, A. Osokin, and I. Laptev, “Context-Aware CNNs for Person Head Detection,” Proceedings of International Conference on Computer Vision, Santiago, Chile, pp. 2893 – 2901, 2015.
[19]. S. Tang, M. Andriluka, A. Milan, K. Schindle, S. Roth, and B. Schiele, “Learning People Detectors for Tracking in Crowded Scenes,” Proceedings of International Conference on Computer Vision, Sydney, Australia, pp. 1049 - 1056, 2013.
[20]. Wikipedia, “Artificial Neural Network,” https://en.wikipedia.org/wiki/Artificial_neural_network, 2017.
[21]. Wikipedia, “Backpropagation,” https://en.wikipedia.org/wiki/Backpropagation, 2017.
[22]. Wikipedia, “Convolutional Neural Network,” https://en.wikipedia.org/wiki/Convolutional_neural_network, 2017.
[23]. Wikipedia, “Massive Open Online Course,” https://en.wikipedia.org/wiki/Massive_open_online_course, 2017.
[24]. Wikipedia, “Particle Filter,” https://en.wikipedia.org/wiki/Particle_filter, 2017.
[25]. Y. Wu, J. Lim, and M. H. Yang, “Online Object Tracking: A Benchmark,” Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Oregon, Portland, pp. 2411 – 2418, 2013.
[26]. B. Wu and R. Nevatia, “Detection and Tracking of Multiple, Partially Occluded Humans by Bayesian Combination of Edgelet Based Part Detectors,” International Journal of Computer Vision, volume 75, No. 2, pp. 247 – 266.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59209-
dc.description.abstract本論文開發一套即時的生醫教師追蹤與視訊錄影系統,能夠在室內環境中對特定目標教師以一廣角相機與一左右轉動上下傾斜與放大縮小 (PTZ, Pan-Tilt-Zoom) 相機來進行追蹤。
行人追蹤已經有許多的生活應用,例如:老年人看顧、線上即時會議、住宅安全監控。在此追蹤系統中,我們採用由偵測來追蹤的方法以粒子濾波的框架來實現。
首先我們必須指定欲追蹤目標,接著以粒子濾波來模擬目標位置的分布。我們訓練一卷積類神經網路來估計目標影像是否為人頭之機率,還有以背景相減法來做前景偵測,且以色彩直方統計計算候選與目標之相似度。最終以估計得最高機率位置為當前追蹤之目標,再迭代估計下一幀之位置。
zh_TW
dc.description.abstractIn this thesis, we develop a nearly real-time biomedical teacher tracking and video recording system to track a biomedical teacher in the indoor scene by one wide-angle camera and one PTZ (Pan-Tilt-Zoom) camera.
Human tracking has many applications such as eldercare, security surveillance, and online meeting. In this human tracking system, we employ tracking-by-detection in particle filter framework to track the target.
We have to specify which person to track first, and model the location of the target as a state distribution by particle filter. Moreover, we train a convolutional neural network as a head classifier to estimate the probability of human head, the motion detector with background subtraction, and color histogram is used to obtain the similarity between candidate and the target.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:17:54Z (GMT). No. of bitstreams: 1
ntu-106-R04945028-1.pdf: 2099894 bytes, checksum: 610616b72dbb1b25951c1eac73166ffb (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Tracking-by-Detection 3
1.3 Convolutional Neural Network 4
1.4 Background Subtraction 4
1.5 Thesis Organization 5
Chapter 2 Related Works 6
2.1 Overview 6
2.2 Kernel-Based Tracking 7
2.3 Tracking-by-Detection 7
2.4 Domain-Specific Tracking 8
Chapter 3 Background 9
3.1 Overview 9
3.2 Particle Filter 9
3.3 Artificial Neural Network 13
3.4 Convolutional Neural Network 15
3.5 Background Subtraction 19
Chapter 4 Methodology 22
4.1 Overview 22
4.2 Particle Filter Framework 22
4.2.1 Particle Filter Sampling 24
4.2.2 Particle Filter Motion Estimation 25
4.2.3 Particle Filter Measurement 25
4.3 Background Subtraction 26
4.4 CNN as a Head Classifier 27
Chapter 5 Experimental Results 31
5.1 Overview 31
5.2 Evaluation 32
5.3 Results 33
Chapter 6 Conclusion 39
Chapter 7 References 40
dc.language.isoen
dc.subject背景相減法zh_TW
dc.subject視覺追蹤zh_TW
dc.subject教師追蹤zh_TW
dc.subject卷積類神經網路zh_TW
dc.subject色彩直方統計zh_TW
dc.subject偵測追蹤法zh_TW
dc.subject粒子濾波zh_TW
dc.subjectvisual trackingen
dc.subjecttracking-by-detectionen
dc.subjectcolor histogramen
dc.subjectconvolutional neural networken
dc.subjecthuman trackingen
dc.subjectbackground subtractionen
dc.subjectparticle filteren
dc.title生醫教師追蹤與視訊錄影zh_TW
dc.titleBiomedical Teacher Tracking and Video Recordingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙坤茂,吳中皓,鄭宇哲
dc.subject.keyword視覺追蹤,教師追蹤,卷積類神經網路,色彩直方統計,偵測追蹤法,粒子濾波,背景相減法,zh_TW
dc.subject.keywordvisual tracking,human tracking,convolutional neural network,color histogram,tracking-by-detection,particle filter,background subtraction,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201701450
dc.rights.note有償授權
dc.date.accepted2017-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved