Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorChao Wangen
dc.contributor.author王超zh_TW
dc.date.accessioned2021-06-16T09:17:47Z-
dc.date.available2018-08-01
dc.date.copyright2017-07-17
dc.date.issued2017
dc.date.submitted2017-07-11
dc.identifier.citation[1]Eggins, B.R., Chemical sensors and biosensors. Vol. 28. 2008: John Wiley & Sons.
[2]Fraden, J., Handbook of modern sensors : physics, designs, and applications, SpringerLink, Editor. 2016, Cham : Springer International Publishing : Imprint: Springer, 2016.
[3]Georganopoulou, D.G., et al., Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(7): p. 2273-2276.
[4]Dubois, B., et al., Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's & Dementia, 2016. 12(3): p. 292-323.
[5]
Murphy, M.P. and H. LeVine, Alzheimer’s Disease and the β-Amyloid Peptide. Journal of Alzheimer's disease : JAD, 2010. 19(1): p. 311.
[6]Aguilar, M.-I. and D.H. Small, Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotoxicity research, 2005. 7(1): p. 17-27.
[7]Sheridan, C., Exosome cancer diagnostic reaches market. Nat Biotech, 2016. 34(4): p. 359-360.
[8]Im, H., et al., Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotech, 2014. 32(5): p. 490-495.
[9]U.S. Department of Health and Human Services, F.D.A., Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Guidelines for Industry: Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product. 2015.
[10]Shen, H.T., Integrated Interface Circuit with Feedback Control Loop Compensation for Dielectric Spectroscopy Biosensor, in Institute of Biomedical Engineering. 2016, National Taiwan University: Taipei, Taiwan. p. 83.
[11]Zhao, X., et al., Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies. Journal of Virological Methods, 2016. 233: p. 15-22.
[12]Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews, 2008. 108(2): p. 462-493.
[13]Label-free interaction analysis Biacore™ 8K. 2016: GE Healthcare Bio-Sciences Corp.
[14]Homola, J., Surface plasmon resonance based sensors, Springer series on chemical sensors and biosensor/Methods and Applications. Springer tracts in modern physics, Springer-Verlag Berlin ed., Heidelberg NY, 2006. 4: p. 7-8.
[15]Sjölander, S. and C. Urbaniczky, Integrated fluid handling system for biomolecular interaction analysis. Analytical chemistry, 1991. 63(20): p. 2338-2345.
[16]Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nat Mater, 2010. 9(3): p. 205-213.
[17]Echtermeyer, T., et al., Strong plasmonic enhancement of photovoltage in graphene. arXiv preprint arXiv:1107.4176, 2011.
[18]Moskovits, M., Hot Electrons Cross Boundaries. Science, 2011. 332(6030): p. 676.
[19]Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.
[20]Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95-103.
[21]Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 1902. 4(21): p. 396-402.
[22]Fano, U., The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222.
[23]Ritchie, R.H., Plasma Losses by Fast Electrons in Thin Films. Physical Review, 1957. 106(5): p. 874-881.
[24]Ritchie, R.H., et al., Surface-Plasmon Resonance Effect in Grating Diffraction. Physical Review Letters, 1968. 21(22): p. 1530-1533.
[25]Kretschmann, E. and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, in Zeitschrift für Naturforschung A. 1968. p. 2135.
[26]Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410.
[27]Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
[28]Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983. 4: p. 299-304.
[29]Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3–4): p. 131-314.
[30]Science, G.L., Principle of Surface Plasmon resonance (SPR) used in Biacore™ systems. 2013.
[31]Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
[32]Zheng, B.Y., et al., Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun, 2015. 6: p. 7797.
[33]Chalabi, H., D. Schoen, and M.L. Brongersma, Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett, 2014. 14(3): p. 1374-80.
[34]Gall, D., Electron mean free path in elemental metals. Journal of Applied Physics, 2016. 119(8): p. 085101.
[35]Shimizu, Y., et al., High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sensors and Actuators B: Chemical, 2002. 83(1–3): p. 195-201.
[36]Crowell, C.R. and S.M. Sze, Current transport in metal-semiconductor barriers. Solid-State Electronics, 1966. 9(11): p. 1035-1048.
[37]Hu, C., Modern semiconductor devices for integrated circuits. 2010: Prentice Hall.
[38]Padovani, F.A. and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, 1966. 9(7): p. 695-707.
[39]Smith, D.R. The Surface Plasmon. Available from: http://people.ee.duke.edu/~drsmith/plasmonics/enhancement.htm.
[40]Schider, G., et al., Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 2003. 68(15): p. 155427.
[41]Nowotny, M.K., et al., Observations of p-type semiconductivity in titanium dioxide at room temperature. Materials Letters, 2010. 64(8): p. 928-930.
[42]Du, L., et al., Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 21-30.
[43]Qiu, W., et al., An electron beam evaporated TiO 2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015. 3(45): p. 22824-22829.
[44]Siefke, T., et al., Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range. Advanced Optical Materials, 2016. 4(11): p. 1780-1786.
[45]Stelling, C., et al., Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Scientific Reports, 2017. 7: p. 42530.
[46]Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review B, 1972. 6(12): p. 4370-4379.
[47]Sellers, M.C.K. and E.G. Seebauer, Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 2011. 519(7): p. 2103-2110.
[48]Knight, M.W., et al., Photodetection with Active Optical Antennas. Science, 2011. 332(6030): p. 702.
[49]Bradshaw, G. and A.J. Hughes, Etching methods for indium oxide/tin oxide films. Thin Solid Films, 1976. 33(2): p. L5-L8.
[50]Model 6485 Picoammeter, Model 6487 Picoammeter/Voltage Source User’s Manual. 2011, www.keithley.com: Keithley Instrument, Inc.
[51]Yunus, W.M.b.M. and A.b.A. Rahman, Refractive index of solutions at high concentrations. Applied Optics, 1988. 27(16): p. 3341-3343.
[52]Tan, C.-Y. and Y.-X. Huang, Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution. Journal of Chemical & Engineering Data, 2015. 60(10): p. 2827-2833.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59203-
dc.description.abstract表面電漿子共振是一種發生在金屬-介電質介面的物理現象,在滿足激發條件時,可見光至紅外波段的入射光與金屬內部電子耦合,改沿著金屬-介電質介面傳播,推動電子集體振盪,形成沿介面傳播的電荷密度波,並且此效應對於介面及附近幾百奈米空間內的微小物理參數變化極為敏感,基於這種特性,表面電漿子共振現象成為近年來感測器研究的熱門領域。傳統表面電漿子共振感測器受限於光學激發架構,在維持感測器性能的前提下,其微小化面臨技術瓶頸,而龐大的體積也大大限制了表面電漿子共振生物感測器在室內和室外臨場檢測、田野檢測、床邊檢測和居家照護方面的應用。
本研究創新性地提出在金屬-介電質表面電漿子共振激發架構上形成新的金屬-介電質-金屬蕭特基接觸,利用表面電漿子共振激發熱載流子生成和蕭特基勢壘光電流篩選機制,從理論上解釋表面電漿子共振致光電流生成的原理,以及討論以光電流量測取代傳統光學量測的可行性。基於理論研究的結論,本研究設計了一款金屬-介電質-金屬架構表面電漿子共振生物感測器。在材料選擇上,本研究使用電洞運輸材料氧化銦錫提升光電流生成效率,討論多種氧化物型半導體材料的特性,並藉以確定由Au-TiO2形成蕭特基接觸、TiO2-Ti形成歐姆接觸。在圖形設計上,本研究先後介紹了元件圖形設計及薄膜厚度設計的原因,借助FDTD模擬對設定的感測器架構進行表面電漿激發模擬,從而驗證參數。本研究利用微影製程和薄膜製程完成感測器製造,並設計了一系列實驗,電壓-電流特性量測實驗、表面電漿激發量測實驗,以及物質辨別實驗等,對感測器的功能進行驗證。依據目前的實驗結果,感測器晶片在物質辨別與濃度辨別方面的表現沒有達到理論預期,針對此實驗結果,本論文也從原理、設計、製程及實驗角度檢討了可能存在的問題,並提出未來改善的方向。
zh_TW
dc.description.abstractWe proposed a Metal-Dielectric-Metal structure based Surface Plasmon Resonance Biosensor in this thesis. Surface Plasmon Resonance (SPR) is a physical phenomenon which can be described as a result of interactions occurring at metal-dielectric interface between infrared or visible frequency electromagnetic waves and surface charges in the metal. The most useful merit of SPR, being extremely sensitive to the complex refractive index changing near the interface within a distance range from ~10nm to ~100nm, make SPR become an intensively studied and developed biomedical and biochemical technology in recent decades.
Conventional SPR sensors or commercialized instruments are based on detection of reflected light with a relatively complicated optical and mechanical system, which makes those machine very large and rigorously restricted to operate inside laboratory.
Facing the growing needs of field test, bedside test or other spot test outside the laboratory, a miniaturized SPR sensor based on electro-optical conversion theory are designed, fabricated, and tested in this article. The mentioned energy conversion process and collection is realized by adding another metal layer to the original Metal-Dielectric SPR bilayer excitation structure, which is called the Metal-Dielectric-Metal structure. Theoretical basis including plasmonic hot carriers generation, current flow through a Schottky barrier under a local bias caused by SPR, is explained and discussed. On the basis of theoretical discussion, a device which contains five layers with different patterns is designed. Specifically, a Schottky barrier is formed at Au-TiO2 boundary, while an Ohmic contact is formed at TiO2-Ti boundary, and ITO are used as HTM to assist the carrier pairs separation. Simulation tools, such as Lumerical FDTD and MATLAB, are used in this research to calculate the optimized thickness. The proposed sensor is fabricated via microlithography and thin-film processing technologies, and tested through a series of experiments. Results of series of experiments indicate that the fabricated sensor does not function as expected. Likely reasons are discussed and summarized in the conclusion, and so are the solutions.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:17:47Z (GMT). No. of bitstreams: 1
ntu-106-R04548061-1.pdf: 44371853 bytes, checksum: 616bbccda664bd209f8bc4ca1a6fd6c4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書
I 誌 謝
II 摘 要
III ABSTRACT IV
目 錄 V
圖目錄 VII
表目錄 XII
第1章 緒 論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究貢獻 6
1.4 論文架構 7
第2章 基本原理與文獻回顧 8
2.1 金屬表面電漿子共振現象 8
2.2 表面電漿子共振基本原理 8
2.3 表面電漿子共振於生物感測 14
2.4 表面電漿子共振於金屬內形成熱擾動致熱載流子產生 15
2.5 金屬-半導體接觸與蕭特基勢壘 18
2.6 蕭特基勢壘之整流特性 20
2.7 表面電漿於蕭特基接觸區域形成等效偏置影響熱載流子產生及運輸 25
2.8 基於蕭特基勢壘的表面電漿子共振感測原理 27
第3章 感測器設計 30
3.1 金屬-介電質-金屬基本架構設計 30
3.2 蕭特基接觸與歐姆接觸之構成與材料選擇 30
3.3 三維圖形定義 33
3.4 感測器表面電漿激發及傳播模擬 38
第4章 製程方法 41
4.1 光學微影技術及製程操作標準 41
4.2 光罩設計 44
4.3 薄膜製程與製程操作標準 46
4.4 製程實施與品質討論 49
第5章 量測與功能驗證 55
5.1 量測系統架構 55
5.2 量測系統矯正測試 58
5.3 電流-電壓特性測試 58
5.4 電流-角度表面電漿子激發測試 60
5.5 物質檢測實驗 63
5.6 總結與討論 65
第6章 結論及展望 71
參考文獻 72
附錄1 MATLAB模擬角度調變下表面電漿子共振程式 76
附錄2 Microposit® S1800® Series Photo Resists Datasheet 78
附錄3 Microposit® MF®-319 Developer Datasheet 83
附錄4 LabVIEW™儀表控制程式之一 87
附錄5 LabVIEW™儀表控制程式之二 91
dc.language.isozh-TW
dc.subject表面電漿子共振zh_TW
dc.subject生物感測器zh_TW
dc.subject金屬-介電質-金屬架構zh_TW
dc.subject蕭特基勢壘zh_TW
dc.subject微製程zh_TW
dc.subjectSchottky Barrieren
dc.subjectMetal-Dielectric-Metal Structureen
dc.subjectBiosensoren
dc.subjectSurface Plasmon Resonanceen
dc.subjectMicro-Fabrication Processesen
dc.title基於金屬-介電質-金屬架構之蕭特基勢壘表面電漿共振生物感測器:設計、製程與驗證zh_TW
dc.titleMetal-Dielectric-Metal Structure Based Schottky Barrier Surface Plasmon Resonance Biosensor: Design, Fabrication, and Verificationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee彭盛裕(Sheng-Yu Peng),黃念祖(Nien-Tsu Huang),陳國平(Kuo-Ping Chen)
dc.subject.keyword表面電漿子共振,生物感測器,金屬-介電質-金屬架構,蕭特基勢壘,微製程,zh_TW
dc.subject.keywordSurface Plasmon Resonance,Biosensor,Metal-Dielectric-Metal Structure,Schottky Barrier,Micro-Fabrication Processes,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201701119
dc.rights.note有償授權
dc.date.accepted2017-07-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
43.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved