請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59183完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖國偉(Kuo-Wei Liao) | |
| dc.contributor.author | Yu-Jen Hou | en |
| dc.contributor.author | 侯宥任 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:17:22Z | - |
| dc.date.available | 2024-02-08 | |
| dc.date.copyright | 2021-02-22 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-10 | |
| dc.identifier.citation | 1.Gaël Epely-Chauvin, Giovanni De Cesare, Sebastian Schwindt. (2014) “Numerical modelling of plunge pool scour evolution in non-cohesive sediments,” Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4, pp. 477-487. 2.Dick R. Mastbergen and Jan H. Van Den Berg. (2003). “Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.” Sedimentology. 3.Javad Farhoudi, Kenneth V. H. Smith (1985), “Local scour profiles downstream of hydraulic jump”, Journal of Hydraulic Research, Vol.23, No.4, pp. 343-358. 4.Junke Guo. (2002). “Hunter Rouse and Shields Diagram., 1096-1098. World Scientific. 5.M. G. Kleinhans. (2000). “Sorting out sand and gravel: sediment transport and deposition in sand-gravel bed rivers.” PhD thesis, Universitaat Utrecht. 6.M. Habibi, M.J khanjani. (2012). “Scour Analysis in High Vertical Drop Shallow Using Numerical and Physical Models.” International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 6. 7.R. Soulsby. (1997). “Ch. 9: Bedload transport in Dynamics of Marine Sand.” Thomas Telford Publications. 8.Shahrokh Amiraslani, Jafar Fahimi, Hossein Mehdinezhad. (2010). “The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool,” XVIII International Conference on Water Resources. 9.U.S. Department of Transportation, Federal Highway Administration. (2006), Hydraulic Engineering Circular No. 14, 3rd edition. 10.Hoffmans Gijs J. C. M. (1998), “Jet scour in equilibrium phase”, Journal of Hydraulic Engineering, ASCE, April 1998, pp.430-437. 11.Schoklitsch, A.(1932) . “Kolkbildung Unter Uberfallstrahlen,” Die Wasserwirtschaft , No.24 ,341-343. 12.Veronese, A.(1973) . “Erosion of a Bed Downstream from Outlet,”Colorado A M College, Fort Collins, Colo. 13.Mason, P. J., and Arumugam, K. (1985) ”Free Jet Scour below Dams and Flip Buckets”, Journal of Hydraulic Engineering, ASCE, Vol.111, No.2, 220-235. 14.Ravi Teja Reddy Tippireddy(2017) ” AIR INJECTION AS A SCOUR COUNTERMEASURE AT BRIDGE”, Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCEIn Civil Engineering 15.Ted M. Champagne1, A,(2016) ” Scour Reduction by Air Injection Downstream of Stilling Basins: Optimal Configuration Determination by Experimentation” 16.Violaine Dugué, A,(2015) ” Influencing Flow Patterns and Bed Morphology in Open Channels and Rivers by Means of an Air-Bubble Screen” 17.Pyrce, R. S., Ashmore, P. E. (2003). ” The relation between particle path length distributions and channel morphology in gravel-bed streams: a synthesis”, Geomorphology, 56(1–2), 167-187. 18.Rodi, W. (1993). ”Turbulence Models and Their Application in Hydraulics”: Taylor Francis. 19.Sawada, M., Ashida, L., Takahashi, T. (1983). Relationship between channel pattern and sediment transport in steep gravel-bed river. Geomorphology, 46, 11. 20.陳正炎、郭信成(1994),「堰壩投潭之沖刷坑特性及其坡度效應研究」第七屆水利工程研討會論文集。 21.陳正炎、蔡建文(1995) 「堰壩投潭水流沖擊力之研究」中華水土保持學報。 22.陳聖文(2000),「防砂壩下游帶工佈置之試驗研究」,國立中興大學土木工程學系碩士論文。 23.張幀禎(2008),「單階自由跌水作用下坡度渠床沖擊特性之試驗研究」,國立中興大學土木工程研究所碩士論文。 24.蕭品彥(2011),「超臨界自由跌流沖擊流場機制研究與視窗化應用」,國立中興大學土木工程學系碩士論文。 25.劉希羿(2012),「坡度跌流工沖擊流場機制之研究」,國立中興大學土木工程學系博士論文。 26.宋狄晉(2014),「非水平式跌流工投潭沖刷機制與應用之試驗研究」,國立中興大學土木工程學系碩士論文。 27.黃劼暉(2015)。上下游渠床坡度對單階自由跌流水力參數影響之試驗研究,國立中興大學土木工程學系所碩士論文。 28.李祈宏 (2000),「砂礫河床之跌水沖刷分析」,國立中央大學土木工程研究所碩士論文。 29.陳正炎(1987),「投潭水作用下渠床沖刷剖面之研究」,臺灣水利,第35 卷,第1期,P.32~35。 30.葉昭憲(1988),「系列防砂壩之沖淤試驗與初步規劃」,國立中興大學水土保持研究所碩士論文。 31.吳金洲(1990),「堰壩溢流水舌對下游河床沖刷之研究」,私立逢甲大學土木及水利工程研究所碩士論文。 32.張如文(1993),「滲流對堰壩下游局部沖刷特性之探討」,國立中興大學土木工程研究所碩士論文。 33.陳正炎、郭信成、鐘文傳(1993),「堰壩投潭沖刷坑特性因子之研究」,中華水土保持學報,第24卷,第2期。 34.蘇重光、連惠邦 (1993),「防砂壩下游天然河床受壩頂溢流沖刷之研究」,台灣水利,第41卷第二期。 35.陳正炎、彭思顯、鍾文傳(1994),「投潭水作用下局部沖刷之沖刷率研究」中華水土保持學報,P.135~141。 36.陳佳裕 (2007),「防砂壩下游水流沖擊力與局部沖刷現象之探討」,國立臺灣大學生物環境系統工程學系碩士論文。 37.方于芸 (2017),「坡度跌流工作用下局部沖刷之沖刷率研究」,國立中興大學土木工程學系碩士論文。 38.何晧愷(2017),「垂直跌水之沖刷探討」,國立臺灣大學生物環境系統工程學系碩士論文。 39.許庭瑄(2020),「應用Scoops3進行滑動面位置之最佳化與崩塌機率之分析」,國立臺灣大學生物環境系統工程學系碩士論文。 40.黃林願(2017),「階梯深潭形成對河道影響之研究」,國立成功大學水利及海洋工程學系碩士論文。 41.黃韻如(2019),「結合隨機森林與自組織映射於淹水災害分區評估」,國立臺灣大學土木學系水利組碩士論文。 42.經濟部水利署北區水資源局(2013),「石門水庫增設防淤隧道工程三維數值模擬及不確定性分析」。 43.莎曼塔(2019),「基因演算法結合長短期記憶於短期電力負荷預測」。 44.王瑞陽(2010),「基於峰態評估及維度分割之混合型粒子群演算法」。 45.中興工程顧問社(2009),「最佳化方法於工程上之應用」。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59183 | - |
| dc.description.abstract | 臺灣位處之地理位置位於板塊交錯之位置,臺灣河川多坡度陡、流量變化大,因此為了穩定溪床,降低災害發生,於上游集水區多有構築水工構造物應用於野溪治理中。然因水工構造物上下游高度常相差過大產生之沖擊力,易使下游河床形成沖刷坑,而沖刷坑之持續增大可能導致基礎沖刷以及護坦破裂受損,進一步導致水工構造物破壞並喪失其原有功能及經濟價值,故如何有效的防止或減緩水工構造物下游沖刷為一臺灣河川治理之重要問題,而目前沖刷坑臺灣常見之減緩沖刷方式多為硬性工法,然臺灣近年由於生態環境之考量,多提倡以柔性工法取代硬性工法,而近年國外新興的氣泡工法為一柔性工法,已在國外有初步使用並於多方面有相關應用的例子,相較於傳統常見之硬性工程,其有較易去除以及能根據現地情形進行調整等特性,能提供一未來能應用於相關水工構造物之參考方法。 本研究將氣泡工法應用在水工構造物的減緩沖刷研究中,以宜蘭縣大同鄉寒溪村番社坑集水區防砂壩為研究範例,應用Flow-3D三維模式模擬分析多管排出氣泡改變水流流場,並減緩防砂壩下游處沖刷之情形,透過改變不同之影響沖刷之參數,包括流量、壩高、管仰角、管高度、氣泡流量等,並透過對於結果進行迴歸分析以及最佳化推演出沖刷深度最小之設計,研究結果顯示氣泡工法能確實改變水流型態,進一步達到減緩沖刷的目的,且透過PSO最佳化後結果顯示對於現地防砂壩,較佳之氣泡管設置為角度45度左右,高度為0.7~1公尺高,管徑為30公分,氣泡流速為6~7(m/s)左右,與原始沖刷深度相比其可減緩沖刷深度平均達1.164m,減緩程度達32.12%,能有效減緩沖刷深度。期許未來能提供防砂壩構築者一經氣泡工法減緩後之沖刷深度參考,以利減少下游之沖刷情形,能實際應用於現地,對於未來水工構造物之減緩沖刷工法有所貢獻。 | zh_TW |
| dc.description.abstract | Taiwan is located at the geographic boundaries of two plates, resulting in short rivers with steep slopes and unstable flow changes. In order to stabilize the riverbed and reduce the occurrence of disasters, many hydraulic structures are constructed in the upstream watershed for torrent management. However, the impact force caused by the altitude difference between the upper and lower reaches of the hydraulic structure is likely to cause the scouring pits at downstream riverbed and the continuous increase of the scouring pit may result in the foundation scour and the rupture and damage of the apron, and further lead to the damage of the hydraulic structure, which may also loses its original function and economic value. Therefore, effectively preventing or slowing down the erosion of hydraulic structures downstream is an important issue in the management of Taiwan’s rivers. At present, most of the common methods of reducing scouring in Taiwan are hard construction methods. Due to ecological considerations, flexible construction methods are often advocated. In recent years, the emerging air injection method is one of the flexible construction methods. It has been initially used abroad and has applied in many aspects. Compared with the traditional hard engineering method, air injection method is relatively easy to remove and can be adjusted according to the current situation, which can provide a valuable method that can be applied to related hydraulic structures in the future. In this study, the air injection method is applied to reduce the buffer brush of hydraulic structures. Taking the sand control dam in the catchment area of Hanxi Village, Datong Township, Yilan County as a research example, the Flow-3D three-dimensional model is used to simulate and analyze the multi-tube discharge air to change water flow field, and slow down the erosion of the downstream of the sand control dam, by changing different parameters that affect the erosion, including flow, dam height, tube elevation, tube height, air flow, etc., and through regression analysis and optimization to find the best design with the smallest scouring depth. The research results show that the air injection method can indeed change the water flow pattern and f reduce the scour. Based on the PSO solution, the results show that for the on-site sand control dam, the best air tube degree setting is 45 degree, the height is 0.7 to 1 meter high, the pipe diameter is 30 cm, and the air velocity is about 6 to 7 (m/s). Compared with the original scouring depth, the scour depth can be reduced by an average of 1.164m, and the degree of declining is 32.12%. The proposed method is able to effectively reduce the depth of the scour. It is hoped that in the future, it will be able to provide a baseline for the scour depth of the check dam builder, so as to reduce the downstream scour situation, which can be practically applied on-site and contribute to the future reduction of the scour construction method of hydraulic structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:17:22Z (GMT). No. of bitstreams: 1 U0001-0802202103290900.pdf: 4719502 bytes, checksum: 615df8a7353aa0f8110da49f4cc742ac (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 誌謝 II 中文摘要 III Abstract IV 目錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2研究流程 4 1.3論文架構 5 第二章 文獻回顧 6 2.1衝擊行為 6 2.2沖刷坑特徵 10 2.3 FLOW-3D模式相關文獻 16 2.4氣泡工法相關文獻 17 2.5三維計算流體力學數值模式之比較 19 2.6最佳化方法比較 20 2.7小結 22 第三章 研究方法 24 3.1研究區域與資料 24 3.2因次分析 28 3.3水槽試驗 30 3.4 Flow-3D CFD 模擬 39 3.5建立預測模式方法 62 3.6最佳化方法(Optization) 68 第四章 研究成果 72 4.1實驗防砂壩現地模擬 72 4.2模式建立 83 4.3 最佳化沖刷深度 91 第五章 結論與建議 97 5.1結論 97 5.2建議 99 參考文獻 100 附錄一 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣泡工法 | zh_TW |
| dc.subject | 防砂壩 | zh_TW |
| dc.subject | 沖刷減緩 | zh_TW |
| dc.subject | Flow-3D | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | Air Injection | en |
| dc.subject | Optimization | en |
| dc.subject | Flow-3D | en |
| dc.subject | Scour Mitigation | en |
| dc.subject | Check Dam | en |
| dc.title | 氣泡工法應用於減緩沖刷之研究 | zh_TW |
| dc.title | Study on Reduction of Local Scour Using Air Injection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹勳全(Hsun-Chuan Chan),許少華(Shao-Hua Xu),白朝金(Chao-Jin BAI) | |
| dc.subject.keyword | 防砂壩,Flow-3D,沖刷減緩,氣泡工法,最佳化, | zh_TW |
| dc.subject.keyword | Check Dam,Scour Mitigation,Flow-3D,Air Injection,Optimization, | en |
| dc.relation.page | 106 | |
| dc.identifier.doi | 10.6342/NTU202100659 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-02-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0802202103290900.pdf 未授權公開取用 | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
