請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59179
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳光鐘 | |
dc.contributor.author | Meng-Jhe Cai | en |
dc.contributor.author | 蔡孟哲 | zh_TW |
dc.date.accessioned | 2021-06-16T09:17:18Z | - |
dc.date.available | 2020-07-20 | |
dc.date.copyright | 2017-07-20 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-12 | |
dc.identifier.citation | 1. Bezine, G. P., Boundary Integral Formulation for Plate Flexure with Arbitrary Boundary Conditions, Mech. Res. Comm.,1978
2. Chen, J. T. and Hong, H. K., Derivations of Integral Equations of Elasticity , Journal of Engineering Mechanics, 114(6), 1028-1044,1988 3. Delale, F. and Erdogan, F., The Problem of Internal and Edge Cracks in an Orthotropic Strip, Journal of Applied Mechanics, 44(2) , 237-242, 1977 4. Erdogan, F. and Gupta, G. D., On the Numerical Solution of Singular Integral Equations, Quarterly of Applied Mathematics, 29, 525-534, 1972. 5. Erdogan, F. and Boduroglu, H., Internal and edge cracks in a plate of finite width under bending. ASME Journal of Applied Mechanics, 50, 621-629, 1983. 6. Hui, C.Y. and Zehnder, A.T., A theory for the fracture of thin plates subjected to bending and twisting moments. International Journal of Fracture, 61, 211–229, 1993. 7. Hwu, C., Stroh-like formalism for the coupled stretching-bending analysis of composite, International Journal of Solids and Structures, 40, 3681-3705, 2003. 8. Hwu, C., Anisotropic Elastic Plate, Springer, New York, 2010 9. Leung, A. Y. T. and Su, R. K. L., Fractal two-level finite element method for cracked kirchhoff's plates using dkt elements. Engineering Fracture Mechanics, 54(5), 703-711, 1996. 10. Murakami, Y., Stress Intensity Factors Handbook, Pergamon Press, Oxford, 1987. 11. Park, J. H. and Atluri, S. N., Analysis of a cracked thin isotropic plate subjected to bending moment by using FEAM. KSME International Journal, 13(12), 912-917, 1999. 12. Rizzo, F. J., An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics. Quart. Appl. Math, 25, 83-95, 1967. 13. Shi and Bezine, Journal of Composite Materials, 1988 14. Snyder, M. D. and Cruse, T. A., Boundary-Integral Analysis of Anisotropic Cracked Plates, International Journal of Fracture, 11(2), 315-328, 1975. 15. Sih, G. C., Paris, P. C. and Erdogan, F., Crack-tip, stress-intensity factors for plane extension and plate bending problems. Journal of Applied Mechanics, 29(2), 306-312, 1962. 16. Su, R. K. L. and Sun, H. Y., Numerical solution of cracked thin plates subjected to bending, twisting and shear loads. International journal of fracture, 117(4), 323-335, 2002. 17. Tamate, O., Two arbitrarily situated cracks in an elastic plate under flexure. International Journal of Solids and Structures, 12, 287-298, 1975. 18. Wu, K. C., Chiu. Y. T. and Hwu, Z. H., A New Boundary Integral Equation Formulation for Linear Elastic Solids, Journal of applied mechanics, 59, 344, 1992. 19. Wu, K. C., A new boundary integral equation method for analysis of cracked linear elastic bodies. Journal of the Chinese Institute of Engineers, 27, 937-941, 2004. 20. Wu, K. C., A new boundary integral equation method for analysis of cracked linear elastic bodies. Journal of the Chinese Institute of Engineers, 27, 937-941, 2004. 21. Wu, K. C., Stress intensity factor and energy release rate for anisotropic plates based on the classical plate theory. Composites Part B 98, 300-308, 2016. 22. Wu, K. C., and Hsiao, P. S., A New Boundary Integral Formulation for Bending of Anisotropic Plates, Acta Mechanica, accepted, 2015. 23. Wu, K. C., Stress intensity factors and energy release rate for anisotropic plates based on the classical plate theory. Compssites Part B, 97, 300-308, 2016. 24. Williams, M. L., The bending stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 28, 78–82, 1961. 25. Young, M.J. and Sun, C.T., On the strain energy release rate for a cracked plate subjected to out-of-plane bending moment. International Journal of Fracture, 60, 227-247, 1993. 26. Zehnder, A.T. and Hui, C.Y., Stress intensity factors for plate bending and shearing problems. Journal of Applied Mechanics, 61, 719–722, 1994. 27. 鄧明浩, 異相彈狹長條內裂縫之分析, 國立台灣大學應用力學研究所碩士論文, 1996. 28. 蕭培需, 一個用於分析異向彈性彎曲問題的新邊界積分法, 國立台灣大學應用力學研究所碩士論文, 2014. 29. 李侑昀, 含裂縫異向性彈性板受彎矩作用之破壞力學分析, 國立台灣大學應用力學研究所碩士論文, 2015 30. 林靖瑋, 含孔洞複合材料層板之邊界元素法分析, 國立台灣大學應用力學研究所碩士論文, 2016 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59179 | - |
dc.description.abstract | 本文利用Wu and Hsiao(2015)所提出的邊界積分方程式,建立一個新的邊界元素法,以分析含裂縫之有限異向彈性板受彎矩或剪力負載的問題。Wu and Hsiao(2015)所提的邊界積分方程式是以旋轉角梯度為參數,本文則在裂縫上進一步引入旋轉角梯度的差值,即旋錯密度,並據以建立含裂縫有限板的邊界積分方程式。之後將邊界積分方程式離散化,將邊界離散成Y個元素項數,而在裂縫上的邊界積分方程式可利用高斯-謝比雪夫積分法(Gauss-Chebyshev integration formulas)離散化,將裂縫離散成N點,表示成矩陣形式,再利用裂縫尖端閉合的條件來彌補不足的方程式,建立聯立方程式來求解。
為驗證本法的有效性,本文的算例涵蓋含單裂縫、雙裂縫、三裂縫、多裂縫之有限幾何板,分別受彎矩、剪力的情況,並考慮等向性、正交性、單層異向性、雙層異向性等材料。所得結果與現有文獻比較顯示,使用本新的邊界元素法,以少數的元素個數即可精確的求得各裂縫尖端的應力強度因子。 | zh_TW |
dc.description.abstract | Based on the boundary integral equation proposed by Wu and Hsiao (2015), a new boundary integral equation is established for the analysis of anisotropic elastic plates under bending or transverse shear loading. The boundary integral equation contains gradients of rotation angle on the exterior boundary as parameters and uses the differences between angles of rotation gradients of the crack faces which are called disclination densities which establish the boundary integral equation for finite plate with cracks. The method of the boundary integral equation discretization is to divide into several parts of line in surrounding boundary. The parameters is constant on each line. Using Gauss-Chebyshev integration formulas and integral equation on cracks to express the disclination density in specific integral points. Crack closure conditions are used to provide additional equations.
To verify the effectiveness of the proposed method, numerical examples provided include finite plates containing one or more cracks under bending and transverse shear loading; Isotropic, orthotropic, monolayer anisotropic and bilayer anisotropic materials are considered. Comparison of the numerical results with those in the literature shows that the proposed method yields accurate values of the stress intensity factors at each crack tip with few elements for the exterior boundary and integration points on the crack lines. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:17:18Z (GMT). No. of bitstreams: 1 ntu-106-R04543060-1.pdf: 3175944 bytes, checksum: e684f7580d18b340403f6897c82b9aa5 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 X 第1章 導論 1 1.1 研究動機與文獻回顧 1 1.2 大綱 4 第2章 古典板理論 5 2.1 古典板理論基本假設 5 2.2 位移場假設及應變與位移關係 6 2.2.1 位移場假設 6 2.2.2 應變與位移關係 7 2.3 組成律 8 2.4 靜力平衡方程式 15 2.5 統御方程式 16 第3章 STROH-LIKE原理與特性 17 第4章 數值分析方法 22 4.1 旋錯介紹 22 4.2 廣義柯西公式 24 4.3 邊界積分方程式 26 4.4 數值方法 29 4.5 應力強度因子 38 第5章 數值結果 41 5.1 材料介紹 41 5.1.1 等向性材料 41 5.1.2 正交性材料 42 5.1.3 單層異向性材料 43 5.1.4 雙層異向性材料 43 5.2 收斂分析 45 5.2.1 等向性材料含單水平裂縫方形板受 ,邊界收斂分析 45 5.2.2 等向性材料含單水平裂縫方形板受 ,裂縫收斂分析 47 5.2.3 等向性材料含雙水平裂縫方形板受 ,邊界收斂分析 49 5.2.4 等向性材料含雙水平裂縫方形板受 ,裂縫收斂分析 52 5.3 文獻驗證 55 5.3.1 等向性材料含單水平裂縫方形板受彎矩 , 與 關係 55 5.3.2 等向性材料含單水平裂縫方形板受剪力 , 與 關係 57 5.3.3 等向性材料含單水平裂縫方形板受剪力 , 與 關係 59 5.3.4 等向性材料含單水平裂縫圓形板受彎矩 , 與 關係 61 5.3.5 等向性材料含雙水平裂縫長方形板受彎矩 , 與 關係 63 5.4 單裂縫分析 68 5.4.1 不同蒲松比之等向性材料含單水平裂縫方形板受彎矩 , 與 68 5.4.2 不同材料含單水平裂縫方形板受彎矩 , 與 關係 70 5.4.3 不同材料含單水平裂縫方形板受彎矩 , 與 關係 72 5.4.4 不同材料含單水平裂縫方形板受剪力 , 與 關係 75 5.4.5 不同材料含單水平裂縫方形板受剪力 , 與 關係 77 5.4.6 不同材料含單水平裂縫圓形板受彎矩 , 與 關係 79 5.4.7 不同材料含單傾斜裂縫方形板受彎矩 , 與 關係 81 5.5 多裂縫分析 84 5.5.1 不同材料含雙水平裂縫方形板受彎矩 , 與水平距離 關係 84 5.5.2 不同材料含雙水平裂縫方形板受彎矩 , 與垂直距離 關係 90 5.5.3 不同材料含雙水平裂縫方形板受彎矩 , 與 關係 94 5.5.4 不同材料含三水平裂縫方形板受彎矩 , 與水平距離 關係 97 5.5.5 不同材料含三水平裂縫方形板受彎矩 , 與垂直距離 關係 102 5.5.6 不同材料含三放射狀裂縫方形板受彎矩 , 與距離 關係 108 5.5.7 不同材料含四放射狀裂縫方形板受彎矩 , 與距離 關係 112 第6章 結論與未來展望 115 6.1 結論 115 6.2 未來展望 117 參考文獻 118 | |
dc.language.iso | zh-TW | |
dc.title | 一個用於分析含裂縫之有限異向彈性板的新邊界元素法 | zh_TW |
dc.title | A New Boundary Element method fot the Analysis of finite Anisotropic Plate with cracks | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張正憲,陳正宗,陳世豪 | |
dc.subject.keyword | 邊界元素法,異向彈性板,旋錯,應力強度因子,高斯-謝比雪夫積分法, | zh_TW |
dc.subject.keyword | Boundary element method,anisotropic plates,disclination,stress intensity factor,Gaoss-Chebyshev integration formulas, | en |
dc.relation.page | 121 | |
dc.identifier.doi | 10.6342/NTU201701433 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。