請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59167
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馬小康(Hsiao-Kan Ma) | |
dc.contributor.author | Po-Ching Hsu | en |
dc.contributor.author | 許柏青 | zh_TW |
dc.date.accessioned | 2021-06-16T09:17:05Z | - |
dc.date.available | 2017-07-17 | |
dc.date.copyright | 2017-07-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-12 | |
dc.identifier.citation | [1] H. K. Ma, H. M. Cheng, W. Y. Cheng, F. M. Fang, and W. F. Luo, 'Development of a piezoelectric proton exchange membrane fuel cell stack (PZT-Stack),' Journal of Power Sources, vol. 240, pp. 314-322, 2013.
[2] M. E. Youssef, R. S. Amin, and K. M. El-Khatib, 'Development and performance analysis of PEMFC stack based on bipolar plates fabricated employing different designs,' Arabian Journal of Chemistry, 2015. [3] 黃鎮江, 燃料電池: 全華圖書股份有限公司, 2005. [4] Taiwan Fuel Cell Information. http://www.tfci.org.tw/fc/class.asp [5] Scheme of a solid-oxide fuel cell. https://en.wikipedia.org/wiki/Solid oxide fuel cell [6] Schematic representation of an alkaline fuel cell. https://en.wikipedia.org /wiki/alkaline fuel cell. [7] Scheme of a phosphoric acid fuel cell. https://en.wikipedia.org/wiki/Phosphoric acid fuel cell [8] L. Caprile, B. Passalacqua, and A. Torazza, 'Carbon capture: Energy wasting technologies or the MCFCs challenge?,' International Journal of Hydrogen Energy, vol. 36, pp. 10269-10277, 2011. [9] P. Andreas. Polymer Electrolyte Membrane (PEM) Fuel Cells. http://www.p frang.de/pageID 2388563.html [10] D. V. J. Sabb. Designing Fuel Cells for Improved Transportation Safety and Security. http://www.scsu.edu/utc/old/research/Reports/2002/fuel.htm [11] 教育部能源國家型科技人才培育計畫102年度特色能源教材. http://www.enedu.org.tw/files/DownloadFile/2013101505326.pdf [12] X. Li and I. Sabir, 'Review of bipolar plates in PEM fuel cells: Flow-field designs,' International Journal of Hydrogen Energy, vol. 30, pp. 359-371, 2005. [13] A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano, and M. Garmendia Mujika, 'Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review,' International Journal of Hydrogen Energy, vol. 37, pp. 15256-15287, 2012. [14] A. Ullmann, 'The piezoelectric valve-less pump—performance enhancement analysis,' Sensors and Actuators A: Physical, vol. 69, pp. 97-105, 1998. [15] R. Jiang and D. Chu, 'Stack design and performance of polymer electrolyte membrane fuel cells,' Journal of Power Sources, vol. 93, pp. 25-31, 2001. [16] A. Kumar and R. G. Reddy, 'Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,' Journal of Power Sources, vol. 113, pp. 11-18, 2003. [17] B. Wang, X. Chu, E. Li, and L. Li, 'Simulations and analysis of a piezoelectric micropump,' Ultrasonics, vol. 44, Supplement, pp. e643-e646, 2006. [18] D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, 'Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,' Microelectronic Engineering, vol. 85, pp. 1289-1293, 2008. [19] H. K. Ma, S. H. Huang, B. R. Chen, and L. W. Cheng, 'Numerical study of a novel micro-diaphragm flow channel with piezoelectric device for proton exchange membrane fuel cells,' Journal of Power Sources, vol. 180, pp. 402-409, 2008. [20] H. K. Ma, S. H. Huang, J. S. Wang, C. G. Hou, C. C. Yu, and B. R. Chen, 'Experimental study of a novel piezoelectric proton exchange membrane fuel cell with nozzle and diffuser,' Journal of Power Sources, vol. 195, pp. 1393-1400, 2010. [21] H. K. Ma, J. S. Wang, and Y. T. Chang, 'Development of a novel pseudo bipolar piezoelectric proton exchange membrane fuel cell with nozzle and diffuser,' Journal of Power Sources, vol. 196, pp. 3766-3772, 2011. [22] H. K. Ma, J. S. Wang, W. H. Su, and W. Y. Cheng, 'The performance of a novel pseudo-bipolar bi-cell piezoelectric proton exchange membrane fuel cell with a smaller nozzle and diffuser,' Journal of Power Sources, vol. 196, pp. 7564-7571, 2011. [23] D. Lee and J. Bae, 'Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC,' International Journal of Hydrogen Energy, vol. 37, pp. 422-435, 2012. [24] H. K. Ma, H. C. Su, and W. F. Luo, 'Investigation of a piezoelectric fan cooling system with multiple magnetic fans,' Sensors and Actuators A: Physical, vol. 189, pp. 356-363, 2013. [25] 陳泰順, '新型可攜式壓電質子交換膜燃料電池之研究,' 國立台灣大學機械工程研究所, 2016. [26] J. Larminie and A. Dicks, Fuel Cell System Explained Second Edition ed.: Wiley, 2003. [27] D. Vatansever, E. Siores, and T. Shah., Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures, 2012. [28] 朱建國、孫小松、李衛, 電子與光電子材料: 北京國防工業出版社. [29] M. T. Ahmadian and M. Amin, 'Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps,' Journal of Physics: Conference Series, vol. 34, p. 379, 2006. [30] S. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells: McGraw-Hill, 1959. [31] E. P. Furlani, Permanent Magnet and Electromechanical Devices, 2001. [32] J. E. Mark, Polymer Data Handbook: Oxford University Press, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59167 | - |
dc.description.abstract | 本研究發展一種利用壓電驅動原件製造一個空氣泵浦(Air-breathing),以供應質子交換膜燃料電池(PEMFC)堆所需要的氧氣。利用永久磁鐵與壓電驅動原件結合的磁力去推動三個空氣泵浦。這樣的設計可以使空氣幫浦能同時為磁力連動雙邊壓電式質子交換膜燃料電池堆(後稱“bi-cell PZTmag-PEMFC stack”)的所有陰極流道板提供足夠的空氣。在操作條件40 V以及70 Hz時,當PZTmag與PDMSmag同時使用直徑6 mm厚度1 mm的磁鐵時,可以得到最大的位移量87 μm,耗能為0.03 W。最後經由實驗結果得知bi-cell PZTmag-PEMFC stack之淨輸出能量密度為0.1925 W cm-2,比較過去研究[1]的3顆bi-cell PZT-PEMFC,發電量淨輸出能量密度提高了20%,且體積與重量分別降低了68%以及76%。此外,與傳統雙極板流道設計的六顆串聯質子交換膜燃料電池相比[2],本研究所設計之燃料電池在歐姆極化區損失的電壓降較小。 | zh_TW |
dc.description.abstract | This study develops an air-breathing pump driven by a piezoelectric actuator to provide air for a Proton Exchange Membrane Fuel Cell (PEMFC) stack. Permanent magnets are combined with a piezoelectric actuator to drive three air breathing pumps using the magnetic force. This design enables the pump to simultaneously provide a sufficient amount of air to all the cathode flow field plate of a “bi-cell PZTmag–PEMFC stack”. When both the PZTmag and the PDMSmag used a magnet with a 6 mm diameter and 1 mm thickness, the maximum amplitude of 87 μm was produced under operating conditions of 70 Hz and 40 V, and the power consumption was 0.03 W. The resulting maximum net power density of the bi-cell PZTmag–PEMFC stack was 0.1925 W cm-2. Compared with the performance reported in previous research [1] on three bi-cell PZT-PEMFC, the net power density increased by 20%, and its volume and weight were reduced by 68% and 76%, respectively. Furthermore, this design has less voltage loss in ohmic polarization region compared with the traditional bipolar plate PEMFC stack when the cells are in series [2]. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:17:05Z (GMT). No. of bitstreams: 1 ntu-106-R04522323-1.pdf: 4999216 bytes, checksum: a2d10002c0a1f36526ffa1314bdbc14d (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract IV 目錄 V 圖目錄 VIII 表目錄 XI 符號表 XII 第一章 緒論 1 1.1前言 1 1.2研究背景 1 1.2.1 燃料電池簡介 1 1.2.2 燃料電池種類介紹 2 1.2.3 質子交換膜燃料電池之構造 6 1.2.4 燃料電池之流道板設計 7 1.3研究動機與目的 8 1.4文獻回顧 9 第二章 壓電磁力燃料電池堆工作原理 13 2.1燃料電池基本原理 13 2.1.1燃料電池理想電位 13 2.1.2燃料電池之極化損失 14 2.1.3燃料電池效率分析 15 2.1.4 燃料電池反應所需氫氣量與氧氣量 17 2.2 壓電材料的特性 18 2.2.1壓電效應 18 2.2.2壓電材料 18 2.3壓電磁力制動器機制分析 19 2.3.1無閥空氣幫浦作動機制 19 2.3.2磁力壓電薄膜理論 22 第三章 壓電磁力燃料電池堆設計與製造 24 3.1 PZT 24 3.2 PDMS薄膜製造 24 3.3膜電極組(MEA) 25 3.4銣鐵硼磁鐵 25 3.5壓電磁力燃料電池堆製造 25 3.6壓電磁力燃料電池堆設計參數與材料 26 第四章 實驗設備與方法 28 4.1實驗設備 28 4.1.1燃料電池測試機台 28 4.1.2氣體質量流量控制器 28 4.1.3壓電片供電儀器與量測裝置 28 4.1.4光纖位移計 29 4.1.4示波器 30 4.2 PZT制動器振幅實驗 30 4.2.1 PDMS固化時間對PZT制動器之影響 30 4.2.2不同磁鐵尺寸對PZTmag制動器工作之影響 31 4.2.3不同磁鐵尺寸對PZTmag燃料電池堆工作之影響 31 4.3電池堆組裝與電性實驗 31 4.3.1電池組裝方法 32 4.3.3實驗步驟與機台設定 33 第五章 結果與討論 35 5.1 PZT-PDMS制動器之震動振幅理論值 35 5.2 PZT-PDMS制動器之震動振幅與消耗功率 35 5.3 磁鐵尺寸對PZTmag制動器之影響 36 5.4 電池堆組裝對PZTmag之影響 36 5.5壓電磁力燃料電池堆串聯發電量 37 5.6壓電磁力燃料電池堆各電池組發電量 38 第六章 結論與建議 40 6.1結論 40 6.2建議 41 參考文獻 42 | |
dc.language.iso | zh-TW | |
dc.title | 磁力連動雙邊壓電式質子交換膜燃料電池堆之研究 | zh_TW |
dc.title | A Bi-cell Proton Exchange Membrane Fuel Cell Stack with a Magnetically Driven Piezoelectric Actuator | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳希立(Sih-Li Chen),潘國隆(Kuo-Long Pan) | |
dc.subject.keyword | 自然進氣,雙電池堆,漸縮漸擴管,壓電制動器,質子交換膜燃料電池, | zh_TW |
dc.subject.keyword | Air breathing,Bi-cell Stack,Nozzle and Diffuser,Piezoelectric Actuator,Proton Exchange Membrane Fuel Cell, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201701095 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。