請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張靜文 | |
| dc.contributor.author | Li-Jin Wang | en |
| dc.contributor.author | 王儷瑾 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:18:18Z | - |
| dc.date.available | 2018-08-14 | |
| dc.date.available | 2021-05-16T16:18:18Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | Albrecht, A., K. Kiel & A. Kolk (2007) Strategies and methods for investigation of airborne biological agents from work environments in Germany. International Journal of Occupational Safety and Ergonomics, 13, 201.
Awad, A., T. Elmorsy, P. Tarwater, C. Green & S. Gibbs (2010) Air biocontamination in a variety of agricultural industry environments in Egypt: a pilot study. Aerobiologia, 26, 223-232. Baird-Parker, A. C. & E. Davenport (1965) The Effect of Recovery Medium on the Isolation of Staphylococcus aureus after Heat Treatment and after the Storage of Frozen or Dried Cells. Journal of Applied Microbiology, 28, 390-402. Bautista-Trujillo, G. U., J. L. Solorio-Rivera, I. Rentería-Solórzano, S. I. Carranza-Germán, J. A. Bustos-Martínez, R. I. Arteaga-Garibay, V. M. Baizabal-Aguirre, M. Cajero-Juárez, A. Bravo-Patiño & J. J. Valdez-Alarcón (2013) Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis. Journal of Medical Microbiology, 62, 369-376. Beggs, C. B. (2003) The Airborne Transmission of Infection in Hospital Buildings: Fact or Fiction? Indoor and Built Environment, 12, 9-18. Buttner, M. P. & L. D. Stetzenbach (1991) Evaluation of four aerobiological sampling methods for the retrieval of aerosolized Pseudomonas syringae. Applied and Environmental Microbiology, 57, 1268-1270. Carricajo, A., A. Treny, N. Fonsale, M. Bes, M. E. Reverdy, Y. Gille, G. Aubert & A. M. Freydiere (2001) Performance of the chromogenic medium CHROMagar Staph aureus and the Staphychrom coagulase test in the detection and identification of Staphylococcus aureus in clinical specimens. Journal of Clinical Microbiology, 39, 2581-2583. Chang, C. W. & F. C. Chou (2011) Assessment of bioaerosol sampling techniques for viable Legionella pneumophila by ethidium monoazide quantitative PCR. Aerosol Science and Technology, 45, 343-351. Chang, C. W., F. C. Chou & P. Y. Hung (2010) Evaluation of bioaerosol sampling techniques for Legionella pneumophila coupled with culture assay and quantitative PCR. Journal of Aerosol Science, 41, 1055-1065. Chang, C. W. & P. Y. Hung (2012) Evaluation of sampling techniques for detection and quantification of airborne legionellae at biological aeration basins and shower rooms. Journal of Aerosol Science, 48, 63-74. Chang C. W., S. Y. Li, S. H. Huang, C. K. Huang, Y. Y. Chen & C. C. Chen (2013) Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities. Indoor Air, 23, 74-84 Chapin, A., A. Rule, K. Gibson, T. Buckley & K. Schwab (2005) Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environmental Health Perspectives, 113, 137. Chapman, G. H. (1945) The significance of sodium chloride in studies of staphylococci. Journal of Bacteriology, 50, 201. De Buyser, M. L., N. Audinet, M. O. Delbart, M. Maire & F. Françoise (1998) Comparison of selective culture media to enumerate coagulase-positive staphylococci in cheeses made from raw milk. Food Microbiology, 15, 339-346. Deloge-Abarkan, M., T. L. Ha, E. Robine, D. Zmirou-Navier & L. Mathieu (2007) Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH). Journal of Environmental Monitoring : JEM, 9, 91-97. Emanuilova, E., M. Kambourova, M. Dekovska & R. Manolov (1993) Thermoalkalophilic lipase-producing Bacillus selected by continuous cultivation. FEMS Microbiology Letters, 108, 247-250. Enright, M. C., D. A. Robinson, G. Randle, E. J. Feil, H. Grundmann & B. G. Spratt (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 99, 7687-7692. Ferroni, A., A. Werkhauser-Bertrand, M. Le Bourgeois, R. Beauvais, S. Vrielynck, C. Durand, G. Lenoir, P. Berche & I. Sermet-Gaudelus (2008) Bacterial contamination in the environment of hospitalised children with cystic fibrosis. Journal of Cystic Fibrosis, 7, 477-482. Friese, A., J. Schulz, L. Hoehle, A. Fetsch, B. A. Tenhagen, J. Hartung & U. Roesler (2012) Occurrence of MRSA in air and housing environment of pig barns. Veterinary Microbiology, 158, 129-135. Friese, A., J. Schulz, K. Zimmermann, B.-A. Tenhagen, A. Fetsch, J. Hartung & U. Rösler (2013) Occurrence of livestock-associated methicillin-resistant Staphylococcus aureus in turkey and broiler barns and contamination of air and soil surfaces in their vicinity. Applied and Environmental Microbiology, 79, 2759-2766. Gandara, A., L. C. Mota, C. Flores, H. R. Perez, C. F. Green & S. G. Gibbs (2006) Isolation of Staphylococcus aureus and Antibiotic-Resistant Staphylococcus aureus from Residential Indoor Bioaerosols. Environmental Health Perspectives, 114. Gehanno, J. F., A. Louvel, M. Nouvellon, J. F. Caillard & M. Pestel-Caron (2009) Aerial dispersal of meticillin-resistant Staphylococcus aureus in hospital rooms by infected or colonised patients. Journal of Hospital Infection, 71, 256-262. Gould, S. W., M. Chadwick, P. Cuschieri, S. Easmon, A. C. Richardson, R. G. Price & M. D. Fielder (2009) The evaluation of novel chromogenic substrates for the detection of lipolytic activity in clinical isolates of Staphylococcus aureus and MRSA from two European study groups. FEMS Microbiology Letters, 297, 10-16. Gray, V., C. Müller, I. Watkins & D. Lloyd (2008) Peptones from diverse sources: pivotal determinants of bacterial growth dynamics. Journal of Applied Microbiology, 104, 554-565. Grinshpun, S. A., K. Willeke, V. Ulevicius, A. Juozaitis, S. Terzieva, J. Donnelly, G. N. Stelma & K. P. Brenner (1997) Effect of impaction, bounce and reaerosolization on the collection efficiency of impingers. Aerosol Science and Technology, 26, 326-342. Han, T. & G. Mainelis (2012) Investigation of inherent and latent internal losses in liquid-based bioaerosol samplers. Journal of Aerosol Science, 45, 58-68. Han, Z., E. Lautenbach, N. Fishman & I. Nachamkin (2007) Evaluation of mannitol salt agar, CHROMagar Staph aureus and CHROMagar MRSA for detection of meticillin-resistant Staphylococcus aureus from nasal swab specimens. Journal of Medical Microbiology, 56, 43-46. Hsiao, P. K., W. T. Chen, K. C. Chang, Y. J. Ke, C. L. Kuo & C. C. Tseng (2011) Performance of CHROMagar Staph aureus and CHROMagar MRSA for Detection of Airborne Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus. Aerosol Science and Technology, 46, 297-308. Huang, P. Y., Z. Y. Shi, C. H. Chen, W. Den, H. M. Huang & J. J. Tsai (2013) Airborne and surface-bound microbial contamination in two intensive care units of a medical center in central Taiwan. Aerosol and Air Quality Research, 13, 1060-1069. ISO, S. (1999) 6888-1 (1999): Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). Part 1: Technique using Baird-Parker agar medium. International Organization for Standardization, Geneva. Jérôme, V., M. Hermann, F. Hilbrig & R. Freitag (2007) Development of a fed-batch process for the production of a dye-linked formaldehyde dehydrogenase in Hyphomicrobium zavarzinii ZV 580. Applied Microbiology and Biotechnology, 77, 779-788. Kane, A. V. & A. G. Plaut (1996) Unique susceptibility of Helicobacter pylori to simethicone emulsifiers in alimentary therapeutic agents. Antimicrobial Agents and Chemotherapy, 40, 500-502. Kateete, D., C. Kimani, F. Katabazi, A. Okeng, M. Okee, A. Nanteza, M. Joloba & F. Najjuka (2010) Identification of Staphylococcus aureus : DNase and Mannitol salt agar improve the efficiency of the tube coagulase test. Annals of Clinical Microbiology and Antimicrobials, 9, 1-7. Kavanaugh, N. L. & K. Ribbeck (2012) Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology, 78, 4057-4061. Kim, H. J. & S. W. Oh (2010) Performance comparison of 5 selective media used to detect Staphylococcus aureus in foods. Food Science and Biotechnology, 19, 1097-1101. Kim, S., M. A. Ramakrishnan, P. Raynor & S. Goyal (2007) Effects of humidity and other factors on the generation and sampling of a coronavirus aerosol. Aerobiologia, 23, 239-248. Lai, M., D. Moschandreas & K. Pagilla (2003) Airborne Bacteria Control Under Chamber and Test-Home Conditions. Journal of Environmental Engineering, 129, 202-208. Le Loir, Y., F. Baron & M. Gautier (2003) Staphylococcus aureus and food poisoning. Genetics and Molecular Research, 2, 63-76. Li, C. S. (1999a) Evaluation of microbial samplers for bacterial microorganisms. Aerosol Science & Technology, 30, 100-108. Li, C. S. (1999b) Sampling performance of impactors for bacterial bioaerosols. Aerosol Science & Technology, 30, 280-287. Li, C. S. & Y. C. Lin (1999a) Sampling Performance of Impactors for Fungal Spores and Yeast Cells. Aerosol Science and Technology, 31, 226-230. Li, C. S. & Y. C. Lin (2001) Storage effects on bacterial concentration: determination of impinger and filter samples. Science of the Total Environment, 278, 231-237. Li, C. S., C. C. Tseng, H. H. Lai & C. W. Chang (2003a) Ultraviolet Germicidal Irradiation and Titanium Dioxide Photocatalyst for Controlling Legionella pneumophila. Aerosol Science and Technology, 37, 961-966. Li, C. S., M. L. Hao, W. H. Lin, C. W. Chang & C. S. Wang (1999) Evaluation of Microbial Samplers for Bacterial Microorganisms. Aerosol Science and Technology, 30, 100-108. Li, C. S. & Y. C. Lin (1999b) Sampling Performance of Impactors for Bacterial Bioaerosols. Aerosol Science and Technology, 30, 280-287. Li, C. S., C. C. Tseng, H. H. Lai & C. W. Chang (2003b) Ultraviolet germicidal irradiation and titanium dioxide photocatalyst for controlling Legionella pneumophila. Aerosol Science & Technology, 37, 961-966. Li, Y. & Z. Nan (2009) Nutritional study on Embellisia astragali, a fungal pathogen of milk vetch (Astragalus adsurgens). Antonie Van Leeuwenhoek, 95, 275-284. Liao, C. H. & L. Shollenberger (2003) Survivability and long‐term preservation of bacteria in water and in phosphate‐buffered saline*. Letters in Applied Microbiology, 37, 45-50. Lin, X., T. A. Reponen, K. Willeke, S. A. Grinshpun, K. K. Foarde & D. S. Ensor (1999) Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291-4298. Lin, X., T. Reponen, K. Willeke, Z. Wang, S. A. Grinshpun & M. Trunov (2000) Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science & Technology, 32, 184-196. Luteijn, J., G. Hubben, P. Pechlivanoglou, M. Bonten & M. Postma (2011) Diagnostic accuracy of culture‐based and PCR‐based detection tests for methicillin‐resistant Staphylococcus aureus: a meta‐analysis. Clinical Microbiology and Infection, 17, 146-154. Macher, J. & H. Burge. 2001. Sampling biological aerosols. In Air Sampling Instruments (Cohen BS, McGammon CS, eds). 9th ed. Cincinnati, OH: American Conference of Governmental Industrial Hygienists, 661-701. Macher, J. & K. Willeke (1992) Performance criteria for bioaerosol samplers. Journal of Aerosol Science, 23, 647-650. Mainelis, G. & M. Tabayoyong (2010) The effect of sampling time on the overall performance of portable microbial impactors. Aerosol Science and Technology, 44, 75-82. Merlino, J., R. Gill & G. Robertson (1996) Application of lipovitellin-salt-mannitol agar for screening, isolation, and presumptive identification of Staphylococcus aureus in a teaching hospital. Journal of Clinical Microbiology, 34, 3012-3015. Mirzaii, M., M. Emaneini, P. Maleknejad, N. Jonaidi, A. A. I. Fooladi, M. Aligholi, F. Jabalameli, S. Halimi, M. Taherikalani & A. Kasaeian (2012) Distribution of bacterial contamination in a teaching hospital in Tehran—A special focus on Staphylococcus aureus. Acta Microbiologica et Immunologica Hungarica, 59, 1-11. Mondello, F., A. Girolamo, M. Scaturro & M. L. Ricci (2009) Determination of Legionella pneumophila susceptibility to Melaleuca alternifolia Cheel (tea tree) oil by an improved broth micro-dilution method under vapour controlled conditions. Journal of microbiological methods, 77, 243-248. Moodley, A., E. C. Nightingale, M. Stegger, S. S. Nielsen, R. L. Skov & L. Guardabassi (2008) High risk for nasal carriage of methicillin-resistant Staphylococcus aureus among Danish veterinary practitioners. Scandinavian Journal of Work, Environment & Health, 34, 151-7. Moore, G. & C. Griffith (2007) Problems associated with traditional hygiene swabbing: the need for in‐house standardization. Journal of Applied Microbiology, 103, 1090-1103. Noble, W. C. (1975) Dispersal of skin microorganisms*. British Journal of Dermatology, 93, 477-485. Ogunbanwo, S., A. Sanni & A. Onilude (2003) Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. African Journal of Biotechnology, 2, 179-184. Paidhungat, M., B. Setlow, A. Driks & P. Setlow (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. Journal of Bacteriology, 182, 5505-5512. Perez, H. R., R. Johnson, P. L. Gurian, S. G. Gibbs, J. Taylor & I. Burstyn (2011) Isolation of Airborne Oxacillin-Resistant Staphylococcus aureus from Culturable Air Samples of Urban Residences. Journal of Occupational and Environmental Hygiene, 8, 80-85. Perez, J. M., P. Cavalli, C. Roure, R. Renac, Y. Gille & A. M. Freydiere (2003) Comparison of Four Chromogenic Media and Hektoen Agar for Detection and Presumptive Identification of Salmonella Strains in Human Stools. Journal of Clinical Microbiology, 41, 1130-1134. Plou, F., M. Ferrer, O. Nuero, M. Calvo, M. Alcalde, F. Reyes & A. Ballesteros (1998) Analysis of Tween 80 as an esterase/ lipase substrate for lipolytic activity assay. Biotechnology Techniques, 12, 183-186. Prema, P., S. Bharathy, A. Palavesam, M. Sivasubramanian & G. Immanuel (2006) Detection, purification and efficacy of warnerin produced by Staphylococcus warneri. World Journal of Microbiology and Biotechnology, 22, 865-872. Ray, B. & M. L. Speck (1973) Freeze-injury in bacteria. Critical Reviews in Clinical Laboratory Sciences, 4, 161-213. Reanprayoon, P. & W. Yoonaiwong (2012) Airborne concentrations of bacteria and fungi in Thailand border market. Aerobiologia, 28, 49-60. Rule, A. M., J. Kesavan, K. J. Schwab & T. J. Buckley (2007) Application of Flow Cytometry for the Assessment of Preservation and Recovery Efficiency of Bioaerosol Samplers Spiked with Pantoea agglomerans. Environmental Science & Technology, 41, 2467-2472. Rule, A. M., K. J. Schwab, J. Kesavan & T. J. Buckley (2009) Assessment of Bioaerosol Generation and Sampling Efficiency Based on Pantoea agglomerans. Aerosol Science and Technology, 43, 620-628. Rutala, W. A., E. B. Katz, R. J. Sherertz & F. A. Sarubbi (1983) Environmental study of a methicillin-resistant Staphylococcus aureus epidemic in a burn unit. Journal of Clinical Microbiology, 18, 683-688. Sadaka, S., E. El-Ghazzawy, R. Harfoush & M. Meheissen (2009) Evaluation of different methods for the rapid diagnosis of methicillin-resistance in Staphylococcus aureus. African Journal of Microbiology Research, 3, 49-55. Safdar, N., L. Narans, B. Gordon & D. G. Maki (2003) Comparison of culture screening methods for detection of nasal carriage of methicillin-resistant Staphylococcus aureus: a prospective study comparing 32 methods. Journal of Clinical Microbiology, 41, 3163-3166. Saito, E., N. Yoshida, J. Kawano, A. Shimizu & S. Igimi (2011) Isolation of Staphylococcus aureus from Raw Fish in Relation to Culture Methods. Journal of Veterinary Medical Science, 73, 287-292. Sato, M. I. Z., P. S. Sanchez, M. N. Alves, N. C. Stoppe & M. T. Martins (1995) Evaluation of culture media for Candida albicans and Staphylococcus aureus recovery in swimming pools. Water Research, 29, 2412-2416. Schulz, J., L. Formosa, J. Seedorf & J. Hartung (2011) Measurement of culturable airborne staphylococci downwind from a naturally ventilated broiler house. Aerobiologia, 27, 311-318. Schulz, J., A. Friese, S. Klees, B. A. Tenhagen, A. Fetsch, U. Rösler & J. Hartung (2012) Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus. Applied and Environmental Microbiology, 78, 5666-5671. Sharp, S. E. & C. Searcy (2006) Comparison of mannitol salt agar and blood agar plates for identification and susceptibility testing of Staphylococcus aureus in specimens from cystic fibrosis patients. Journal of Clinical Microbiology, 44, 4545-4546. Shiomori, T., H. Miyamoto, K. Makishima, M. Yoshida, T. Fujiyoshi, T. Udaka, T. Inaba & N. Hiraki (2002) Evaluation of bedmaking-related airborne and surface methicillin-resistant Staphylococcus aureus contamination. Journal of Hospital Infection, 50, 30-35. Shittu, A., J. Lin, D. Morrison & D. Kolawole (2006) Identification and molecular characterization of mannitol salt positive, coagulase-negative staphylococci from nasal samples of medical personnel and students. Journal of Medical Microbiology, 55, 317-324. Sirigul, C., W. Wongwit, W. Phanprasit, W. Paveenkittiporn, S. D. Blacksell & P. Ramasoota (2006) Development of a combined air sampling and quantitative real-time PCR method for detection of Legionella spp. Southeast Asian Journal of Tropical Medicine and Public Health, 37, 503-7. Stewart, S. L., S. A. Grinshpun, K. Willeke, S. Terzieva, V. Ulevicius & J. Donnelly (1995) Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology, 61, 1232-9. Terzieva, S., J. Donnelly, V. Ulevicius, S. A. Grinshpun, K. Willeke, G. N. Stelma & K. P. Brenner (1996) Comparison of methods for detection and enumeration of airborne microorganisms collected by liquid impingement. Applied and Environmental Microbiology, 62, 2264-2272. Thompson, M. W., J. Donnelly, S. A. Grinshpun, A. Juozaitis & K. Willeke (1994) Method and test system for evaluation of bioaerosol samplers. Journal of Aerosol Science, 25, 1579-1593. Thorne, P. S., M. S. Kiekhaefer, P. Whitten & K. J. Donham (1992) Comparison of bioaerosol sampling methods in barns housing swine. Applied and Environmental Microbiology, 58, 2543-2551. Tseng, C. C. & C. S. Li (2005) Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science, 36, 593-607. Tseng, C. H., H. C. Wang, N. Y. Xiao & Y. M. Chang (2011) Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings. Building and Environment, 46, 2578-2589. Van Enk, R. A. & K. Thompson (1992) Use of a primary isolation medium for recovery of methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 30, 504-505. Wang, Z., T. Reponen, S. A. Grinshpun, R. L. Górny & K. Willeke (2001) Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. Journal of Aerosol Science, 32, 661-674. Willeke, K., X. Lin & S. A. Grinshpun (1998) Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology, 28, 439-456. Zetola N., J. S. Francis, E. L. Nuermberger & W. R. Bishai (2005) Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infectious Diseases, 5, 275-86. Zhong, Z., T. Chai, H. Duan, Z. Miao, X. Li, M. Yao, W. Yuan, W. Wang, Q. Li, B. A. Zucker & G. Schlenker (2009) REP-PCR tracking of the origin and spread of airborne Staphylococcus aureus in and around chicken house. Indoor Air, 19, 511-516. 李聰明, 蘇秋霞, 周偉惠, 王立信, 王復德, 王振泰, 呂學重, 周明淵, 莊銀清, 黃高彬, 陳垚生, 方啟泰, 吳肖琪, 郭英調, 簡麗蓉, 顏哲傑, 曾淑慧 & 張上淳 (2011) 2009年台灣院內感染監視系統分析報告. 感染控制雜誌, 21, 195-201. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5914 | - |
| dc.description.abstract | 研究指出金黃色葡萄球菌(Staphylococcus aureus)可透過直接接觸或空氣傳播造成人員感染,為醫院院內感染常見之病原菌;此外,在畜養家禽場所、紡織、麵粉與食品相關工作環境中亦發現Staphylococcus spp.為空氣中主要菌種之一。抗藥性金黃色葡萄球菌(Methicillin-resistant Staphylococcus aureus)之出現,亦導致在治療此細菌感染時變得更為棘手。
有效監測此致病菌在職業場所空氣中是否存在及其濃度值,將有助於釐清勞工暴露風險;然何種採樣策略最能有效捕集空氣中的S. aureus,目前仍不清楚。有鑑於此,本研究透過建置生物氣膠產生系統,評估不同採樣介質與生物氣膠採樣器針對S. aureus之採樣效能。在評估S. aureus培養基部分,係以Andersen 1-STG搭配TSA、MSA、BPA、CSA與CSM進行6分鐘之空氣採樣,而後以培養法分析並計算不同培養基之效能指標(R)。結果顯示,非選擇性培養基TSA之R值顯著高於四類選擇性培養基之R值(Kruskal Wallis test, p = 0.0092, Scheffé test, p < 0.05);而選擇性培養基中,以MSA採樣效能最高,然與其他三種選擇性培養基並未達統計上顯著差異。而後以Andersen 1-STG搭配具較佳空氣採樣效能之TSA與MSA 評估時間因子對採樣效能之影響,結果顯示兩種培養基均於採樣3分鐘時具有最佳之採樣效能(Kruskal Wallis test, TSA:p = 0.008, MSA:p = 0.0447, Scheffé test, p < 0.05),而6至60分鐘採樣所得之R值彼此間則未達統計顯著差異。 評估S. aureus收集液部分,係以AGI-30搭配Tween 80 mixture、PBS與DW進行3分鐘之採樣。結果顯示,Tween 80 mixture之R值皆顯著高於其他兩種收集液之R值,而PBS之R值顯著高於DW之R值(Kruskal Wallis test, p = 0.0002, Scheffé test事後檢定, p < 0.05);接著以AGI-30與BioSampler搭配三種收集液進行3、6與15分鐘空氣採樣以評估流失率。結果顯示,採樣時間自3分鐘延長至15分鐘時,流失率顯著上升(Kruskal Wallis test, p < 0.0001, Scheffé test, p < 0.05)。而後評估AGI-30與BioSampler搭配具較佳空氣採樣效能之Tween 80 mixture與PBS,於不同採樣時間下之採樣效能,結果顯示採樣器搭配Tween 80 mixture採樣6分鐘時之採樣效能顯著高於3分鐘之R值(Kruskal Wallis test, AGI-30:p = 0.0013, BioSampler:p = 0.0018, Scheffé test事後檢定, p < 0.05),大於15分鐘之R值即隨採樣時間延長而下降;採樣器搭配PBS採樣時,其採樣效能於不同採樣時間下彼此間皆具顯著差異(Kruskal Wallis test, AGI-30:p = 0.0014, BioSampler:p = 0.0011, Scheffé test事後檢定, p < 0.05),且隨採樣時間增加而下降。 將所有採樣方法之R值進行統計檢定,結果顯示,BioSampler 搭配Tween 80 mixture之採樣效能最佳,顯著高於其他五種採樣方法;BioSampler 搭配PBS以及AGI-30搭配Tween 80 mixture次之,而AGI-30搭配PBS之採樣效能最差(Kruskal Wallis test, p < 0.0001, Scheffé test事後檢定, p < 0.05)。 本研究進一步根據文獻與本實驗結果,對S. aureus實場空氣採樣策略之建議,依採樣目的分為兩項: 1. 若欲進行環境空氣中S. aureus濃度監測,本研究建議使用BioSampler搭配PBS進行前測。於經消毒控制之環境,建議前測時間為30與60分鐘,後續將收集液濃縮至0.2mL進行培養法分析。於無特定S. aureus污染源或未經消毒控制之環境,建議前測時間為6-60分鐘,其中採樣時間為6-15分鐘時,可將收集液濃縮至0.2 mL;若採樣時間延長為30-60分鐘時,可將收集液濃縮至0.2 mL、0.5mL或1mL後再進行培養法分析。此外,於空氣中S. aureus濃度較高之環境採樣時,則建議前測時間為3-60分鐘,收集液可濃縮至1mL或直接經適當稀釋以培養法分析。 2. 若欲進行空氣中可培養性S. aureus之定性分析,此時建議可以BioSampler搭配Tween 80 mixture進行30-60分鐘之空氣採樣,採樣中並定時補充收集液。 本研究成果預期未來可應用於實際職場環境中,用以有效監測空氣中致病菌,協助決策者採取適當的控制策略,減少院內感染並保護勞工健康。 | zh_TW |
| dc.description.abstract | Previous studies have indicated that Staphylococcus aureus may be spread via respirable-sized aerosols and transmitted by direct contact and airborne route. Staphylococcus spp. are revealed as the dominant bacteria in poultry houses and textile, flourmill and food-related factories. In particular, the emergence of methicillin- resistant S. aureus results in difficult-to-treat infections. However, limited research has been conducted to investigate the sampling methods for airborne S. aureus. To deal with this issue, a bioaerosol generation system was developed to evaluate the performance of various sampling methods for collecting airborne S. aureus.
Sampling performance (R) of five agar plates for recovering airborne S. aureus was determined by 6-min sampling using Andersen 1-STG followed by the culture assay. Results showed that the non-selective agar TSA performed significantly better than the other four selective agar types (Kruskal Wallis test, p = 0.0092, Scheffé test, p < 0.05). For the four selective agar media, the MSA performed best but at no statistical significance compared with the other three. The effects of sampling time on the performance of Andersen 1-STG for collecting airborne S. aureus onto TSA and MSA showed that the R with 3 min-sampling was significantly greater than those of the other sampling times regardless of agar type (Kruskal Wallis test, TSA:p = 0.008, MSA:p = 0.0447, Scheffé test, p < 0.05), while there was no statistical difference in sampling performance among the sampling times between 6 and 60 min. In addition, the sampling performance of three collection liquid types for recovering airborne S. aureus was determined by 3-min sampling using AGI-30 followed by the same assay. It shows that no matter what kind of agar arranged, Tween 80 mixture performed significantly better than the other two liquid types (Kruskal Wallis test, p = 0.0002, Scheffé test, p < 0.05), PBS the second. As for the loss rate of three collection liquid types for sampling airborne S. aureus was determined by 3, 6 and 15-min sampling using AGI-30 and BioSampler. Results indicated that there was no statistical difference in loss rate among the three liquid types. Also, liquid-based samplers showed no statistical significance compared with each other. When sampling time was extended from 3min to 15 min, however, there was a statistical increasing in loss rate (Kruskal Wallis test, p < 0.0001, Scheffé test, p < 0.05). Moreover, the effects of sampling time on the performance of AGI-30 and BioSampler for recovering airborne S. aureus with Tween 80 mixture showed that the R with 6 min-sampling was significantly greater than those of the other sampling times, including 3 min-sampling (Kruskal Wallis test, AGI-30:p = 0.0013, BioSampler:p = 0.0018, Scheffé test, p < 0.05). The aforementioned results may be attributable to the proliferation of S. aureus collected in Tween 80 mixture. For the effects of sampling time on the performance of AGI-30 and BioSampler arranged with PBS, results showed that the performance of them decreased significantly with prolonged sampling time (Kruskal Wallis test, AGI-30:p = 0.0014, BioSampler:p = 0.0011, Scheffé test, p < 0.05). In summary, the performance of BioSampler arranged with Tween 80 mixture was the best. BioSampler and AGI-30 arranged with PBS and Tween 80 mixture, respectively, the second. Further, AGI-30 arranged with PBS gave the worst performance (Kruskal Wallis test, p < 0.0001, Scheffé test, p < 0.05). The advisable sampling strategy depends on the purpose of sampling. To monitor the concentration of airborne S. aureus in environment, the sampling carried out for 15 min with BioSampler equipped with PBS is recommended. Furthermore, to performe the qualitative analysis of airborne S. aureus, the sampling conducted for 30-60 min with BioSampler equipped with Tween 80 mixture is applicable. It is expected that this study will be able to be applied in occupational and residential environment to effectively identify and monitor concentration of airborne S. aureus. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:18Z (GMT). No. of bitstreams: 1 ntu-102-R00841018-1.pdf: 7962745 bytes, checksum: ccb9d3e6f41059cb14929716c1bb2bee (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................................... I
中文摘要 .......................................................................................................................... II Abstract ........................................................................................................................... IV 目錄 ................................................................................................................................ VI 圖目錄 .............................................................................................................................. X 表目錄 ............................................................................................................................ XI 第一章 前言 ..................................................................................................................... 1 1.1 研究背景 ................................................................................................................ 1 第二章 文獻回顧 ............................................................................................................. 3 2.1 金黃色葡萄球菌(Staphylococcus aureus) ....................................................... 3 2.1.1生物特性 ................................................................................................. 3 2.1.2健康影響 ................................................................................................. 3 2.1.3空氣傳播 ................................................................................................. 4 2.1.4空氣採樣研究 ......................................................................................... 5 2.2 金黃色葡萄球菌之固體培養基 .......................................................................... 10 2.2.1非選擇性培養基 ................................................................................... 10 2.2.2 選擇性培養基 ...................................................................................... 10 2.2.3 金黃色葡萄球菌鑑定 .......................................................................... 14 2.2.3.1 鑑定準確度 .............................................................................. 14 2.2.3.2 選擇性培養基相關鑑定研究 .................................................. 15 2.3 生物氣膠收集液 .................................................................................................. 18 2.4 生物氣膠採樣器 .................................................................................................. 19 2.4.1 以固體培養基為採樣介質之採樣器(Agar-based samplers) ......... 19 2.4.1.1 安德森單階式生物氣膠採樣器(Andersen one stage sampler,Andersen 1-STG) .................................................................... 19 2.4.1.2 時間因子對採樣效能之影響 .................................................. 19 2.4.2 以液體為採樣介質之採樣器(Liquid-based samplers) .................. 20 2.4.2.1 液體衝擊瓶(All glass impinger,AGI-30)與離心式採樣器 VII (BioSampler) ........................................................................ 20 2.4.2.2 時間因子對採樣效能之影響 .................................................. 20 第三章 研究目的 ........................................................................................................... 21 第四章 研究架構 ........................................................................................................... 23 第五章 材料與方法 ....................................................................................................... 25 5.1 實驗菌株 .............................................................................................................. 25 5.2實驗用培養基、培養液與採樣收集液 ............................................................... 25 5.2.1 Tryptic Soy Agar(TSA) .................................................................... 25 5.2.2 Mannitol Salt Agar(MSA) ............................................................... 25 5.2.3 Baird-Parker Agar(BPA) .................................................................. 26 5.2.4 CHROMagar Staph aureus Agar(CSA) ........................................... 26 5.2.5 Chapman Stone Medium(CSM) ....................................................... 26 5.2.6 Luria-Bertani(LB)broth .................................................................... 26 5.2.7 Phosphate buffer saline(PBS) ........................................................... 27 5.2.8 Tween 80混合液 ................................................................................... 27 5.3置備與建立金黃色葡萄球菌檢量線 ................................................................... 27 5.4金黃色葡萄球菌菌液濃度之調整 ....................................................................... 28 5.5 S. aureus氣膠產生系統 ....................................................................................... 28 5.6 S. aureus氣膠產生系統之穩定性測試 ............................................................... 31 5.6.1 濕空氣、乾空氣與生物氣膠產生器之流量 ...................................... 31 5.6.2 暴露艙相對濕度 .................................................................................. 31 5.6.3 生物氣膠產生器(Nebulizer)中S. aureus菌液濃度 ...................... 31 5.6.4 暴露艙生物氣膠濃度 .......................................................................... 32 5.6.5 採樣效能指標(R) ........................................................................... 32 5.6.6 S. aureus粒徑分佈 ............................................................................... 33 5.7 空白試驗 .............................................................................................................. 33 5.8 S. aureus空氣採樣方法之效能評估 ................................................................... 34 5.8.1 以固體培養基為採樣介質之採樣器(Agar-based samplers)效能評估 .......................................................................................................... 34 5.8.1.1 選擇S. aureus最佳空氣採樣培養基 ..................................... 34 5.8.1.2 採樣時間對Andersen 1-STG採樣效能之影響 ..................... 37 5.8.2 以收集液為採樣介質之採樣器(Liquid-based samplers)效能評估 .............................................................................................................. 38 5.8.2.1 評估S. aureus空氣採樣收集液之採樣效能 ......................... 38 5.8.2.2 評估S. aureus空氣採樣收集液之流失率 ............................. 41 5.8.2.3 時間因子對AGI-30與Biosampler採樣效能之影響 ........... 42 5.9 資料分析 .............................................................................................................. 43 第六章 結果 ................................................................................................................... 45 6.1 S. aureus氣膠產生系統之穩定性測試 ............................................................... 45 6.1.1 濕空氣、乾空氣與生物氣膠產生器流量 .......................................... 45 6.1.2 暴露艙相對濕度 .................................................................................. 47 6.1.3生物氣膠產生器中S. aureus菌液濃度 .............................................. 49 6.1.4 暴露艙空氣中S. aureus濃度 ............................................................. 50 6.1.5 採樣效能指標(R) ........................................................................... 51 6.1.6 S. aureus粒徑分佈 ............................................................................... 54 6.2 以固體培養基為採樣介質之採樣器效能評估 .................................................. 56 6.2.1 選定最佳空氣採樣培養基 .................................................................. 56 6.2.2 時間因子對Andersen 1-STG採樣效能之影響 ................................. 58 6.3 以收集液為採樣介質之採樣器(Liquid-based samplers)效能評估 .............. 64 6.3.1 評估S. aureus空氣採樣收集液之採樣效能 ..................................... 64 6.3.2 評估S. aureus空氣採樣收集液之流失率 ......................................... 66 6.3.3 時間因子對AGI-30採樣效能之影響 ................................................ 69 6.3.4 時間因子對BioSampler採樣效能之影響 ......................................... 75 6.3.5以收集液為採樣介質之生物氣膠採樣方法比較 ............................... 79 6.3.5.1 BioSampler與AGI-30之採樣效能 ......................................... 79 6.3.5.2 Tween 80 mixture與PBS之採樣效能 .................................... 79 6.3.5.3 BioSampler與AGI-30搭配Tween 80 mixture與PBS之採樣效能 ........................................................................................... 79 6.4 Andersen 1-STG、AGI-30與BioSampler之採樣效能比較 ............................. 81 第七章 討論 ................................................................................................................... 83 7.1 S. aureus氣膠產生系統 ....................................................................................... 83 7.2 以固體培養基為採樣介質之採樣方法效能評估 .............................................. 84 7.2.1選定S. aureus最佳空氣採樣培養基 .................................................. 84 7.2.1.1非選擇性與選擇性培養基 ....................................................... 84 7.2.1.2選擇性培養基 ........................................................................... 85 7.2.1.3 鑑定流程 .................................................................................. 88 7.2.2 時間因子對Andersen 1-STG採樣效能之影響 ................................. 93 7.3 以收集液為採樣介質之採樣方法效能評估 ...................................................... 97 7.3.1 評估S. aureus空氣採樣收集液之採樣效能 ..................................... 97 7.3.1.1 Tween 80 mixture ...................................................................... 97 7.3.1.2 PBS與DW ............................................................................. 101 7.3.2 時間因子對AGI-30與BioSampler採樣效能之影響 ..................... 102 7.3.2.1 採樣時間 ................................................................................ 102 7.3.2.2 AGI-30與BioSampler之採樣效能差異 ............................... 105 7.3.2.3 菌種之採樣效能差異 ............................................................ 106 7.4 Andersen 1-STG、AGI-30與BioSampler ........................................................ 108 7.5 採樣策略 ............................................................................................................ 110 7.6 研究限制 ............................................................................................................ 115 7.7 結論與建議 ........................................................................................................ 116 附錄 ............................................................................................................................... 119 參考文獻 ....................................................................................................................... 137 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物氣膠採樣器 | zh_TW |
| dc.subject | 生物氣膠 | zh_TW |
| dc.subject | 金黃色葡萄球菌 | zh_TW |
| dc.subject | 採樣效能 | zh_TW |
| dc.subject | bioaerosol samplers | en |
| dc.subject | airborne | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | sampling performance | en |
| dc.title | 金黃色葡萄球菌空氣採樣方法效能評估-暴露艙研究 | zh_TW |
| dc.title | A Chamber Study on Assessment of Sampling Techniques for Airborne Staphylococcus aureus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃耀輝 | |
| dc.contributor.oralexamcommittee | 余國賓,吳佩芝 | |
| dc.subject.keyword | 生物氣膠,金黃色葡萄球菌,採樣效能,生物氣膠採樣器, | zh_TW |
| dc.subject.keyword | airborne,Staphylococcus aureus,sampling performance,bioaerosol samplers, | en |
| dc.relation.page | 150 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 7.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
