請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59149
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇忠楨 | |
dc.contributor.author | Choon Yong Wee | en |
dc.contributor.author | 黃俊榕 | zh_TW |
dc.date.accessioned | 2021-06-16T09:16:46Z | - |
dc.date.available | 2019-08-01 | |
dc.date.copyright | 2017-08-01 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-13 | |
dc.identifier.citation | Abbassi-Guendouz, A., Brockmann, D., Trably, E., Dumas, C., Delgenès, J.-P., Steyer, J.-P., and Escudié, R. (2012). Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology 111, 55-61.
Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis. The Scientific World Journal 2014, 183752. André, L., Durante, M., Pauss, A., Lespinard, O., Ribeiro, T., and Lamy, E. (2015). Quantifying physical structure changes and non-uniform water flow in cattle manure during dry anaerobic digestion process at lab scale: Implication for biogas production. Bioresource Technology 192, 660-669. American Public Health Association (1995). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA. Appels, L., Baeyens, J., Degrève, J., and Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science 34, 755-781. Appels, L., Lauwers, J., Degrève, J., Helsen, L., Lievens, B., Willems, K., Van Impe, J., and Dewil, R. (2011). Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews 15, 4295-4301. Bacenetti, J., Bava, L., Zucali, M., Lovarelli, D., Sandrucci, A., Tamburini, A., and Fiala, M. (2016). Anaerobic digestion and milking frequency as mitigation strategies of the environmental burden in the milk production system. Science of The Total Environment 539, 450-459. Baere, L.d., and Mattheeuws, B. (2010). Anaerobic digestion of MSW in Europe. BioCycle 51, 24-26. Bollongino, R., Burger, J., Powell, A., Mashkour, M., Vigne, J.-D., and Thomas, M.G. (2012). Modern Taurine Cattle Descended from Small Number of Near-Eastern Founders. Molecular Biology and Evolution 29, 2101-2104. Boulamanti, A.K., Donida Maglio, S., Giuntoli, J., and Agostini, A. (2013). Influence of different practices on biogas sustainability. Biomass and Bioenergy 53, 149-161. Bondari, K., and Sheppard, D.C. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture 24, 103-109. Bondari, K., and Sheppard, D.C. (1987). Soldier fly, Hermetia illucens L., larvae as feed for channel catfish, Ictalurus punctatus (Rafinesque), and blue tilapia, Oreochromis aureus (Steindachner). Aquaculture Research 18, 209-220. Booth, D.C., and Sheppard, C. (1984). Oviposition of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae): Eggs, Masses, Timing, and Site Characteristics. Environmental entomology 13, 421-423. Bradley, S.W., and Sheppard, D.C. (1984). House fly oviposition inhibition by larvae of Hermetia illucens, the black soldier fly. Journal of chemical ecology 10, 853-859. Chae, K.J., Jang, A., Yim, S.K., and Kim, I.S. (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology 99, 1-6. Chen, Y., Cheng, J.J., and Creamer, K.S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology 99, 4044-4064. Chynoweth, D.P., Owens, J.M., and Legrand, R. (2001). Renewable Energy 22, 1-8. COA, 2003. Dairy farm environmental protection facilities, Council of Agricultures (COA), Taiwan, ROC (From, http://www.angrin.tlri.gov.tw/cow/rocmilk_y50/cowrocmilk_y50-74.htm).(in Chinese) COA, 2010. Animal manure and its composition (May 2017), Council of Agricultures (COA), Taiwan, ROC (From, http://kmweb.coa.gov.tw/subject/public/Data/18251343571.pdf). (in Chinese) COA, 2016. Cattle production report, Council of Agricultures (COA), Taiwan, ROC (From, http://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx). (in Chinese) Craig Sheppard, D., Larry Newton, G., Thompson, S.A., and Savage, S. (1994). A value added manure management system using the black soldier fly. Bioresource Technology 50, 275-279. Craig Sheppard, D., Tomberlin, J.K., Joyce, J.A., Kiser, B.C., and Sumner, S.M. (2002). Rearing Methods for the Black Soldier Fly (Diptera: Stratiomyidae). Journal of medical entomology 39, 695-698. Degueurce, A., Tomas, N., Le Roux, S., Martinez, J., and Peu, P. (2016). Biotic and abiotic roles of leachate recirculation in batch mode solid-state anaerobic digestion of cattle manure. Bioresource Technology 200, 388-395. Diener, S., Zurbrügg, C., and Tockner, K. (2009). Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Management & Research 27, 603-610. Diener, S., Studt Solano, N.M., Roa Gutiérrez, F., Zurbrügg, C., and Tockner, K. (2011). Biological Treatment of Municipal Organic Waste using Black Soldier Fly Larvae. Waste and Biomass Valorization 2, 357-363. El-Mashad, H.M., van Loon, W.K.P., and Zeeman, G. (2003). A Model of Solar Energy Utilisation in the Anaerobic Digestion of Cattle Manure. Biosystems Engineering 84, 231-238. Erickson, M.C., Islam, M., Sheppard, C., Liao, J., and Doyle, M.P. (2004). Reduction of Escherichia coli O157:H7 and Salmonella enterica Serovar Enteritidis in Chicken Manure by Larvae of the Black Soldier Fly. Journal of Food Protection 67, 685-690. Eskicioglu, C., and Ghorbani, M. (2011). Effect of inoculum/substrate ratio on mesophilic anaerobic digestion of bioethanol plant whole stillage in batch mode. Process Biochemistry 46, 1682-1687. Fernandes, S.D., Trautmann, N.M., Streets, D.G., Roden, C.A., and Bond, T.C. (2007). Global biofuel use, 1850–2000. Global Biogeochemical Cycles 21. Fernandes, T.V., Keesman, K.J., Zeeman, G., and van Lier, J.B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy 47, 316-323. Field, C.B., Campbell, J.E., and Lobell, D.B. (2008). Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution 23, 65-72. Forster-Carneiro, T., Pérez, M., Romero, L.I., and Sales, D. (2007). Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources. Bioresource Technology 98, 3195-3203. Forster-Carneiro, T., Pérez, M., and Romero, L.I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology 99, 6994-7002. Frigon, J.C., and Guiot, S.R. (2010). Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuels, Bioproducts & Biorefining 4, 447-458. Fricke, K., Santen, H., Wallmann, R., Hüttner, A., and Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Management 27, 30-43. Fruteau de Laclos, H., Desbois, S., and Saint-Joly, C. (1997). Anaerobic digestion of municipal solid organic waste: Valorga full-scale plant in Tilburg, The Netherlands. Water Science and Technology 36, 457-462. Furman, D.P., Young, R.D., and Catts, P.E. (1959). Hermetia illucens (Linnaeus) as a Factor in the Natural Control of Musca domestica Linnaeus. Journal of economic entomology 52, 917-921. Ge, X.M., Xu, F.Q., and Li, Y.B. (2016). Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresource Technology 205, 239-249. Gerardi, M.H. (2003). The microbiology of anaerobic digesters (John Wiley & Sons). Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., and Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities (Rome: Food and Agriculture Organization of the United Nations (FAO)). González-Fernández, C., and García-Encina, P.A. (2009). Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass and Bioenergy 33, 1065-1069. Hegde, G., and Pullammanappallil, P. (2007). Comparison of Thermophilic and Mesophilic One-Stage, Batch, High-Solids Anaerobic Digestion. Environmental Technology 28, 361-369. Herzog, A.V., Lipman, T.E., and Kammen, D.M. (2001). Renewable energy sources. Encyclopedia of Life Support Systems (EOLSS) Forerunner Volume-‘Perspectives and Overview of Life Support Systems and Sustainable Development. Hilkiah Igoni, A., Ayotamuno, M.J., Eze, C.L., Ogaji, S.O.T., and Probert, S.D. (2008). Designs of anaerobic digesters for producing biogas from municipal solid-waste. Applied Energy 85, 430-438. Huis, A.v., Itterbeeck, J.V., Klunder, H., Mertens, E., Halloran, A., Muir, G., and Vantomme, P. (2013). Edible insects: future prospects for food and feed security (Rome: Food and Agriculture Organization of the United Nations). Jha, A.K., Li, J.Z., Nies, L., and Zhang, L.G. (2011). Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10, 14242-14253. Karthikeyan, O.P., and Visvanathan, C. (2013). Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Reviews in Environmental Science and Bio/Technology 12, 257-284. Kaseng, K., Ibrahim, K., Paneerselvam, S.V., and Hassan, R.S. (1992). Extracellular enzymes and acidogen profiles of a laboratory-scale two-phase anaerobic digestion system. Process Biochemistry 27, 43-47. Kerroum, D., Mossaab, B.L., and Hassen, M.A. (2012). Production of biogas from sludge waste and organic fraction of municipal solid waste (INTECH Open Access Publisher). Kim, M., Gomec, C.Y., Ahn, Y., and Speece, R.E. (2003). Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. Environmental Technology 24, 1183-1190. Kondusamy, D., and Kalamdhad, A.S. (2014). Pre-treatment and anaerobic digestion of food waste for high rate methane production – A review. Journal of Environmental Chemical Engineering 2, 1821-1830. Kothari, R., Pandey, A.K., Kumar, S., Tyagi, V.V., and Tyagi, S.K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew Sust Energ Rev 39, 174-195. Lalander, C., Diener, S., Magri, M.E., Zurbrügg, C., Lindström, A., and Vinnerås, B. (2013). Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens) — From a hygiene aspect. Science of The Total Environment 458–460, 312-318. Li, Y.B., Park, S.Y., and Zhu, J.Y. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev 15, 821-826. Li, Y., Zhu, J., Wan, C., and Park, S.Y. (2011). Solid-state anaerobic digestion of corn stover for biogas production. Transactions of the ASABE 54, 1415-1421. Li, Y., Zhang, R., Chen, C., Liu, G., He, Y., and Liu, X. (2013). Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technology 149, 406-412. Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Yu, Z., and Zhang, Y. (2015). Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly. Bioresource Technology 194, 276-282. Liu, Q., Tomberlin, J.K., Brady, J.A., Sanford, M.R., and Yu, Z. (2008). Black Soldier Fly (Diptera: Stratiomyidae) Larvae Reduce Escherichia coli in Dairy Manure. Environmental entomology 37, 1525-1530. Lijó, L., González-García, S., Bacenetti, J., Fiala, M., Feijoo, G., and Moreira, M.T. (2014). Assuring the sustainable production of biogas from anaerobic mono-digestion. Journal of Cleaner Production 72, 23-34. LRD, 2016. Effluent Standards, Laws and Regulations Database of The Republic of China (LRD), Taiwan, ROC (From, http://law.moj.gov.tw/LawClass/LawContent.aspx?PCODE=O0040004).(in Chinese) Manyi-Loh, C.E., Mamphweli, S.N., Meyer, E.L., Okoh, A.I., Makaka, G., and Simon, M. (2013). Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy. International Journal of Environmental Research and Public Health 10, 4390-4417. Mara, D., and Horan, N.J. (2003). Handbook of water and wastewater microbiology (Academic press). Martin, D.J., Potts, L.G.A., and Heslop, V.A. (2003). Reaction Mechanisms in Solid-State Anaerobic Digestion. Process Safety and Environmental Protection 81, 180-188. Martínez-Sánchez, A., Magaña, C., Saloña, M., and Rojo, S. (2011). First record of Hermetia illucens (Diptera: Stratiomyidae) on human corpses in Iberian Peninsula. Forensic Science International 206, e76-e78. McCarty, P.L. (1964). Anaerobic waste treatment fundamentals III. Public works 95, 91. McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83, 37-46. Moss, A., Jouany, J.-P., and Newbold, J. (2000). Methane production by ruminants: its contribution to global warming. Annales de zootechnie 49, 231-253. Møller, H.B., Sommer, S.G., and Ahring, B.K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy 26, 485-495. Motte, J.C., Escudié, R., Bernet, N., Delgenes, J.P., Steyer, J.P., and Dumas, C. (2013). Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresource Technology 144, 141-148. Muller, T., Walter, B., Wirtz, A., and Burkovski, A. (2006). Ammonium toxicity in bacteria. Curr Microbiol 52, 400-406. Myers, H.M., Tomberlin, J.K., Lambert, B.D., and Kattes, D. (2008). Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae Fed Dairy Manure. Environmental entomology 37, 11-15. Nakamura, S., Ichiki, R.T., Shimoda, M., and Morioka, S. (2016). Small-scale rearing of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae), in the laboratory: low-cost and year-round rearing. Applied Entomology and Zoology 51, 161-166. Nguyen, T.T.X., Tomberlin, J.K., and Vanlaerhoven, S. (2015). Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environmental entomology 44, 406-410. Newton, G.L., Booram, C.V., Barker, R.W., and Hale, O.M. (1977). Dried Hermetia Illucens Larvae Meal as a Supplement for Swine. Journal of Animal Science 44, 395-400. Niu, Q., Takemura, Y., Kubota, K., and Li, Y.-Y. (2015). Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience. Waste Management 43, 114-122. Oonincx, D.G.A.B., van Broekhoven, S., van Huis, A., and van Loon, J.J.A. (2015). Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 10, e0144601. Pezzolla, D., Di Maria, F., Zadra, C., Massaccesi, L., Sordi, A., and Gigliotti, G. (2017). Optimization of solid-state anaerobic digestion through the percolate recirculation. Biomass Bioenerg 96, 112-118. Ponsá, S., Ferrer, I., Vázquez, F., and Font, X. (2008). Optimization of the hydrolytic–acidogenic anaerobic digestion stage (55 °C) of sewage sludge: Influence of pH and solid content. Water Research 42, 3972-3980. Procházka, J., Dolejš, P., Máca, J., and Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Appl Microbiol Biotechnol 93, 439-447. Rajagopal, R., Massé, D.I., and Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology 143, 632-641. Sheets, J.P., Ge, X., and Li, Y. (2015). Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass. Bioresource Technology 180, 296-303. Sheppard, C. (1983). House Fly and Lesser Fly Control Utilizing the Black Soldier Fly in Manure Management Systems for Caged Laying Hens. Environmental entomology 12, 1439-1442. Shi, J., Wang, Z., Stiverson, J.A., Yu, Z., and Li, Y. (2013). Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresource Technology 136, 574-581. Siegert, I., and Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry 40, 3412-3418. Song, Y.-C., Kwon, S.-J., and Woo, J.-H. (2004). Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Research 38, 1653-1662. St-Hilaire, S., Cranfill, K., McGuire, M.A., Mosley, E.E., Tomberlin, J.K., Newton, L., Sealey, W., Sheppard, C., and Irving, S. (2007). Fish Offal Recycling by the Black Soldier Fly Produces a Foodstuff High in Omega-3 Fatty Acids. Journal of the World Aquaculture Society 38, 309-313. Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., and Haan, C.d. (2006). Livestock's long shadow: environmental issues and options (Rome: Food and Agriculture Organization of the United Nations (FAO)). Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Tomberlin, J.K., and Sheppard, D.C. (2002). Factors Influencing Mating and Oviposition of Black Soldier Flies (Diptera: Stratiomyidae) in a Colony. Journal of Entomological Science 37, 345-352. United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. ESA/P/WP.241. USDA. (2017). Livestock and Poultry: World Markets and Trade (April). (from: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf) Wang, Y., Zhang, Y., Wang, J., and Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy 33, 848-853. Ward, A.J., Hobbs, P.J., Holliman, P.J., and Jones, D.L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology 99, 7928-7940. Weiland, P. (2010). Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85, 849-860. Wittmann, C., Zeng, A.P., and Deckwer, W.D. (1995). Growth inhibition by ammonia and use of a pH controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Appl Microbiol Biotechnol 44, 519-525. Xu, F., Shi, J., Lv, W., Yu, Z., and Li, Y. (2013). Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management 33, 26-32. Xu, F.Q., Wang, Z.W., Tang, L., and Li, Y.B. (2014). A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass. Bioresource Technology 167, 178-185. Yang, L.C., Xu, F.Q., Ge, X.M., and Li, Y.B. (2015). Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sust Energ Rev 44, 824-834. Zhu, J., Wan, C., and Li, Y. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology 101, 7523-7528. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59149 | - |
dc.description.abstract | 本研究旨在研究連續使用固態厭氧消化及黑水虻堆肥化於牛糞的可行性。本研究共分成兩個部分來進行,分別為固態厭氧消化與黑水虻堆肥化實驗,固態厭氧消化的原料為牛糞,而黑水虻堆肥化的原料則是固態厭氧消化的沼渣。固態厭氧消化實驗的目的為建立最佳的操作參數,包含污泥接種率(10、30及50%)及pH(7.8) 調整的必要性。黑水虻堆肥化實驗則是為了探討最佳的沼渣餵食量(25、50、75及100 毫克/日/每隻蛆)。固態厭氧消化實驗的結果顯示,料源pH值無調整的組別其沼氣產量、甲烷量、總固形物去除率及揮發性固體去除率都比料源pH調整(pH = 7.8)的組別低。其中以料源接種30%種源組別的甲烷產量最高,分別為626.1±28.7 L methane/kg-VS des 及96.81±2.0 L methane/kg-VS load (p<0.05)。然而,料源接種50%種源組別 (pH = 7.8) 於第5天就達到最高的甲烷產量,比料源接種30與10% (pH=7.8)組別分別提早3與9天使甲烷產量達到最高。料源接種50%(pH 7.8)也是最高的揮發性固體去除率(20.2±2.4%)的組別。黑水虻實驗結果顯示,每日每隻75與100毫克組別中的黑水虻幼蛆有最大的體重變化,分別為969.6±28.4與984.1±177.6%。可是在料源的總固體去除率、揮發性固體去除率及總氮去除率方面,各組間都沒有顯著差異。本研究顯示,固態厭氧消化的料源是必須調整pH,而且種源接種量必須在30至50%之間,才能達到最高的沼氣產量以及最佳的總固體與揮發性固體去除率。而黑水虻堆肥化實驗結果顯示,黑水虻蛆堆肥化可以進一步降低沼渣中的營養物質的含量,進而提高牛糞的附加價值。 | zh_TW |
dc.description.abstract | The goal of this study was to evaluate the feasibility of applying a two-step biological treatment process, solid-state anaerobic digestion (SSAD) and black soldier fly larvae (BSFL) composting, to treat and recover energy from dairy cow manure. The feedstock for SSAD and BSFL experiments were dairy cow manure and digestate (i.e. anaerobically digested cow manure from SSAD reactors), respectively. The study of SSAD was to establish the optimal operation parameters. Thus, different ratios of inocula to feedstock (10, 30, and 50%) and with or without pH adjustment were tested for this study. For the study of BSFL, different feeding rates (25, 50, 75, and 100 mg/day/larvae) of digestate were applied for black soldier fly larvae composting experiments. In SSAD experiments, experimental results showed that the groups without pH adjustment regardless inoculation ratio of feedstock resulted in lower biogas, methane yield, and waste reduction than the groups with pH adjustment. Where the group 30% inoculation ratio (IR30) with pH adjustment had the highest theoretical methane productivity (626.1±28.7 L methane/kg-VS des) and ultimate methane yield (96.81±2.0 L methane/kg-VS load) (p<0.05). However, the group 50% inoculation ratio (IR50) with pH adjustment reached methane productivity peak at Day 5, which was 3 and 9 days faster than the 30 and 10% inoculation ratio (IR30 and IR10) with pH adjustment groups, respectively. The IR50 with pH adjustment group had the highest volatile solid removal efficiency of 20.2±2.4%. For BSFL experiments, the groups with feeding rate of 75 and 100 mg/day/larvae had the highest body weight change, which were 969.6±28.4 and 984.1±177.6%, respectively. However, removal efficiency of total solids (TS), volatile solids (VS), and nitrogen did not differ among treatments. Experimental results of this study showed that pH adjustment of feedstock was necessary during batch SSAD, where IR30 and IR50 groups achieved the highest specific methane production and waste removal efficiency. In addition, the BSFL composting enables further reduction of nutrients in the digestate of SSAD and promotes additional values of anaerobically digested dairy cow manure. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:16:46Z (GMT). No. of bitstreams: 1 ntu-106-R04626006-1.pdf: 2460789 bytes, checksum: bc56ca76570278f517e892cc95978fe9 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Dedication I
Acknowledgements II 中文摘要 III Abstract IV Table of contents VI List of tables IX List of figures X List of abbreviations XI Chapter 1. Introduction 1 1.1. Background 1 1.2. Objectives 2 1.3. Thesis Organization 3 Chapter 2. Literature review 4 2.1. Livestock industry in Taiwan 4 2.1.1. Dairy cow farming in Taiwan 4 2.1.2. Characteristic of cow manure 5 2.1.3. Treatment of cow manure in Taiwan 6 2.1.4. Three-step wastewater treatment 6 2.1.5. Composting 9 2.1.6. Environmental impact - Global warming 10 2.1.7. GHGs emissions in livestock sector 11 2.1.8. GHGs emission in manure management 12 2.2. Renewable energy - Anaerobic digestion 13 2.2.1. What is anaerobic digestion 15 2.2.2. Biochemical reaction of anaerobic digestion 16 2.2.2.1. Hydrolysis 17 2.2.2.2. Acidogenesis 17 2.2.2.3 Acetogenesis 18 2.2.2.4. Methanogenesis 19 2.2.3. Types of anaerobic digestion 20 2.2.4. The advantage of solid-state anaerobic digestion 21 2.2.5. The drawback of solid-state anaerobic digestion 23 2.2.6. Operation parameters for solid-state anaerobic digestion 23 2.2.6.1. Temperature 24 2.2.6.2. Total solid content 26 2.2.6.3. Inoculation 27 2.2.6.4. pH 29 2.2.6.5. Volatile fatty acids 30 2.2.6.6. Ammonia 31 2.6.7. Carbon-Nitrogen ratio 32 2.2.7. GHGs mitigation through the adoption of anaerobic digestion 33 2.3. Hermetia illucens - Black soldier fly 35 2.3.1. Lifecycle of black soldier fly 36 2.3.2. Black soldier fly as animal feed 37 2.3.3. Applications of black soldier fly on waste management 38 2.3.3.1. Reduction on TS, VS, P, N 39 2.3.3.2. Control of pest, house fly 39 2.3.3.3. Reduction of pathogens in Manure 40 Chapter 3. Materials and methods 41 3.1. Solid-state anaerobic digestion experiment set up 41 3.1.1. Design of anaerobic digester 41 3.1.2. Substrate and inoculum 43 3.1.3. Solid-state anaerobic digestion experiment design 44 3.1.3.1. Groups with pH adjustment 44 3.1.3.2. Groups without pH adjustment 45 3.1.4. Biogas volume measurement 46 3.1.5. Substrate and digestate weight measurement 47 3.1.6. Gas analysis 47 3.1.7. Liquid Analysis 48 3.1.7.1. Volatile fatty acids 48 3.1.7.2. Ion chromatography 49 3.1.7.3. Total and volatile solid 50 3.1.7.4. Biochemical oxygen demand (BOD) 52 3.1.7.5. Chemical oxygen demand (COD) 55 3.1.7.6. pH 57 3.1.7.7. Conductivity 57 3.1.8. Solid analysis 57 3.2. Black soldier fly experiment 57 3.2.1. Preparing substrate for black soldier fly larvae experiment 57 3.2.2. Black soldier fly experiment design 58 Chapter 4. Result and Discussion 59 4.1. Solid-state anaerobic digestion 59 4.1.1. Characteristics of sludge, sludge and fresh cow manure mixture and digestate 59 4.1.2. Effect of pH adjustment and inoculation ratio on total and volatile solid removal efficiency 63 4.1.3. Effect of pH adjustment and inoculation ratio on daily biogas production and total biogas production 65 4.1.4. Reasons of low biogas production for groups without pH adjustment 68 4.1.5. Effect of inoculation ratio on daily VFAs concentration and daily pH value for groups with pH adjustment 71 4.1.6. Effect of pH adjustment and inoculation ratios on methane concentration and production 76 4.1.7. Effect of pH adjustment and inoculation ratios on methane productivity rate 80 4.2. Black soldier fly larvae composting 83 4.2.1. Effect of different feeding rate on larvae weight change 83 4.2.2. Effect of different feeding rate on substrate total solid, volatile solid, and nitrogen content removal efficiency of SSAD digestate 84 Chapter 5. Conclusion 86 Reference 87 Appendix 98 | |
dc.language.iso | en | |
dc.title | 乳牛糞進行固態厭氧消化與黑水虻堆肥化技術之可行性研究 | zh_TW |
dc.title | Feasibility of solid-state anaerobic digestion and black soldier fly larvae composting for dairy cattle manure management | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐世勳,陳禹西,周楚洋 | |
dc.subject.keyword | 乳牛糞,固態厭氧消化,沼氣,黑水虻, | zh_TW |
dc.subject.keyword | Dairy cow manure,Solid-state anaerobic digestion,Biogas,Black soldier fly, | en |
dc.relation.page | 99 | |
dc.identifier.doi | 10.6342/NTU201701443 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-13 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。