請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59144完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏 | |
| dc.contributor.author | Hung-Ming Lai | en |
| dc.contributor.author | 賴虹名 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:16:42Z | - |
| dc.date.available | 2017-09-12 | |
| dc.date.copyright | 2017-09-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-13 | |
| dc.identifier.citation | Anders, J., M. Bluggel, H. E. Meyer, R. Kuhne, A. M. ter Laak, E. Kojro and F. Fahrenholz (1999). 'Direct identification of the agonist binding site in the human brain cholecystokininB receptor.' Biochemistry 38(19): 6043-6055.
Astatke, M., N. D. Grindley and C. M. Joyce (1995). 'Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment).' J Biol Chem 270(4): 1945-1954. Astatke, M., N. D. Grindley and C. M. Joyce (1998). 'How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides.' J Mol Biol 278(1): 147-165. Beese, L. S., V. Derbyshire and T. A. Steitz (1993). 'Structure of DNA polymerase I Klenow fragment bound to duplex DNA.' Science 260(5106): 352-355. Bonk, T. and A. Humeny (2001). 'MALDI-TOF-MS analysis of protein and DNA.' Neuroscientist 7(1): 6-12. Brutlag, D. and A. Kornberg (1972). 'Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases.' J Biol Chem 247(1): 241-248. Carver, T. E., R. A. Hochstrasser and D. P. Millar (1994). 'Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I.' Proceedings of the National Academy of Sciences of the United States of America 91(22): 10670-10674. Chait, B. T., R. Wang, R. C. Beavis and S. B. Kent (1993). 'Protein ladder sequencing.' Science 262(5130): 89. Cowart, M., K. J. Gibson, D. J. Allen and S. J. Benkovic (1989). 'DNA substrate structural requirements for the exonuclease and polymerase activities of prokaryotic and phage DNA polymerases.' Biochemistry 28(5): 1975-1983. Derbyshire, V., P. S. Freemont, M. R. Sanderson, L. Beese, J. M. Friedman, C. M. Joyce and T. A. Steitz (1988). 'Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I.' Science 240(4849): 199-201. Donlin, M. J., S. S. Patel and K. A. Johnson (1991). 'Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction.' Biochemistry 30(2): 538-546. Fidalgo da Silva, E., S. S. Mandal and L. J. Reha-Krantz (2002). 'Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases.' J Biol Chem 277(43): 40640-40649. Fidalgo da Silva, E. and L. J. Reha-Krantz (2007). 'DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.' Nucleic Acids Research 35(16): 5452-5463. Frey, M. W., L. C. Sowers, D. P. Millar and S. J. Benkovic (1995). 'The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase.' Biochemistry 34(28): 9185-9192. Friedberg, E. C., G.C. Walker, and W. Siede (1995). 'DNA repair and mutagenesis.' ASM Press Fu, D.-J., K. Tang, A. Braun, D. Reuter, B. L. Iverson, B. Darnhofer-Demar, D. P. Little, M. J. O'Donnell, C. R. Cantor and H. Koster (1998). 'Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry.' Nat Biotech 16(4): 381-384. Gardner, A. F., C. M. Joyce and W. E. Jack (2004). 'Comparative kinetics of nucleotide analog incorporation by vent DNA polymerase.' J Biol Chem 279(12): 11834-11842. Girault, S., S. Sagan, G. Bolbach, S. Lavielle and G. Chassaing (1996). 'The use of photolabelled peptides to localize the substance-P-binding site in the human neurokinin-1 tachykinin receptor.' Eur J Biochem 240(1): 215-222. Goodman, M. F., S. Creighton, L. B. Bloom and J. Petruska (1993). 'Biochemical basis of DNA replication fidelity.' Crit Rev Biochem Mol Biol 28(2): 83-126. Griffin, T. J. and L. M. Smith (2000). 'Single-nucleotide polymorphism analysis by MALDI–TOF mass spectrometry.' Trends in Biotechnology 18(2): 77-84. Haff, L. A. and I. P. Smirnov (1997). 'Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry.' Genome Res 7(4): 378-388. Hooyberghs, J., P. Van Hummelen and E. Carlon (2009). 'The effects of mismatches on hybridization in DNA microarrays: determination of nearest neighbor parameters.' Nucleic Acids Research 37(7): e53-e53. Isola, N. R., S. L. Allman, V. V. Golovlov and C.-H. Chen (1999). 'Chemical Cleavage Sequencing of DNA Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.' Analytical Chemistry 71(13): 2266-2269. Jiménez, C. R., K. W. Li, K. Dreisewerd, S. Spijker, R. Kingston, R. H. Bateman, A. L. Burlingame, A. B. Smit, J. van Minnen and W. P. M. Geraerts (1998). 'Direct Mass Spectrometric Peptide Profiling and Sequencing of Single Neurons Reveals Differential Peptide Patterns in a Small Neuronal Network.' Biochemistry 37(7): 2070-2076. Joyce, C. M., W. S. Kelley and N. D. Grindley (1982). 'Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I.' J Biol Chem 257(4): 1958-1964. Karran, P. and T. Lindahl (1980). 'Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus.' Biochemistry 19(26): 6005-6011. Kawase, Y., S. Iwai, H. Inoue, K. Miura and E. Ohtsuka (1986). 'Studies on nucleic acid interactions. I. Stabilities of mini-duplexes (dG2A4XA4G2-dC2T4YT4C2) and self-complementary d(GGGAAXYTTCCC) containing deoxyinosine and other mismatched bases.' Nucleic Acids Research 14(19): 7727-7736. Kelly, R. B., N. R. Cozzarelli, M. P. Deutscher, I. R. Lehman and A. Kornberg (1970). 'Enzymatic synthesis of deoxyribonucleic acid. XXXII. Replication of duplex deoxyribonucleic acid by polymerase at a single strand break.' J Biol Chem 245(1): 39-45. Kirpekar, F., S. Douthwaite and P. Roepstorff (2000). 'Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry.' RNA 6(2): 296-306. Klenow, H. and I. Henningsen (1970). 'Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis.' Proc Natl Acad Sci U S A 65(1): 168-175. Kornberg, A. (1957). 'Enzymatic synthesis of deoxyribonucleic acid.' Harvey lectures 53: 83-112. Koster, H., K. Tang, D.-J. Fu, A. Braun, D. van den Boom, C. L. Smith, R. J. Cotter and C. R. Cantor (1996). 'A strategy for rapid and efficient DNA sequencing by mass spectrometry.' Nat Biotech 14(9): 1123-1128. Kunkel, T. A. (2004). 'DNA replication fidelity.' J Biol Chem 279(17): 16895-16898. Kunkel, T. A., Y. I. Pavlov and K. Bebenek (2003). 'Functions of human DNA polymerases η, κ and ι suggested by their properties, including fidelity with undamaged DNA templates.' DNA Repair 2(2): 135-149. Lamichhane, R., S. Y. Berezhna, J. P. Gill, E. Van der Schans and D. P. Millar (2013). 'Dynamics of site switching in DNA polymerase.' J Am Chem Soc 135(12): 4735-4742. Langen, H., P. Berndt, D. Roder, N. Cairns, G. Lubec and M. Fountoulakis (1999). 'Two-dimensional map of human brain proteins.' Electrophoresis 20(4-5): 907-916. Lee, C. C., Y. C. Yang, S. D. Goodman, Y. H. Yu, S. B. Lin, J. T. Kao, K. S. Tsai and W. H. Fang (2010). 'Endonuclease V-mediated deoxyinosine excision repair in vitro.' DNA Repair (Amst) 9(10): 1073-1079. Lee, C. C., Y. C. Yang, S. D. Goodman, C. J. Lin, Y. A. Chen, Y. T. Wang, W. C. Cheng, L. I. Lin and W. H. Fang (2013). 'The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair.' DNA Repair (Amst) 12(11): 899-911. Leung, K. H., H. Z. He, H. J. Zhong, L. Lu, D. S. Chan, D. L. Ma and C. H. Leung (2013). 'A highly sensitive G-quadruplex-based luminescent switch-on probe for the detection of polymerase 3'-5' proofreading activity.' Methods 64(3): 224-228. Lindahl, T. (1993). 'Instability and decay of the primary structure of DNA.' Nature 362(6422): 709-715. Lucas, L. T., D. Gatehouse and D. E. Shuker (1999). 'Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity.' J Biol Chem 274(26): 18319-18326. Machold, J., Y. Utkin, D. Kirsch, R. Kaufmann, V. Tsetlin and F. Hucho (1995). 'Photolabeling reveals the proximity of the alpha-neurotoxin binding site to the M2 helix of the ion channel in the nicotinic acetylcholine receptor.' Proc Natl Acad Sci U S A 92(16): 7282-7286. Martin, F. H., M. M. Castro, F. Aboul-ela and I. Tinoco (1985). 'Base pairing involving deoxyinosine: implications for probe design.' Nucleic Acids Research 13(24): 8927-8938. Mendelman, L. V., J. Petruska and M. F. Goodman (1990). 'Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase.' J Biol Chem 265(4): 2338-2346. Moe, A., J. Ringvoll, L. M. Nordstrand, L. Eide, M. Bjørås, E. Seeberg, T. Rognes and A. Klungland (2003). 'Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V.' Nucleic Acids Research 31(14): 3893-3900. Morales, J. C. and E. T. Kool (2000). 'Importance of Terminal Base Pair Hydrogen-Bonding in 3‘-End Proofreading by the Klenow Fragment of DNA Polymerase I.' Biochemistry 39(10): 2626-2632. Myrnes, B., P. H. Guddal and H. Krokan (1982). 'Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity.' Nucleic Acids Res 10(12): 3693-3701. Nguyen, T., D. Brunson, C. L. Crespi, B. W. Penman, J. S. Wishnok and S. R. Tannenbaum (1992). 'DNA damage and mutation in human cells exposed to nitric oxide in vitro.' Proceedings of the National Academy of Sciences 89(7): 3030-3034. Ollis, D. L., P. Brick, R. Hamlin, N. G. Xuong and T. A. Steitz (1985). 'Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP.' Nature 313(6005): 762-766. Patel, P. H., M. Suzuki, E. Adman, A. Shinkai and L. A. Loeb (2001). 'Prokaryotic DNA polymerase I: evolution, structure, and 'base flipping' mechanism for nucleotide selection.' J Mol Biol 308(5): 823-837. Patel, S. S., I. Wong and K. A. Johnson (1991). 'Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.' Biochemistry 30(2): 511-525. Petruska, J. and M. F. Goodman (1985). 'Influence of neighboring bases on DNA polymerase insertion and proofreading fidelity.' J Biol Chem 260(12): 7533-7539. Pieles, U., W. Zürcher, M. Schär and H. E. Moser (1993). 'Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides.' Nucleic Acids Research 21(14): 3191-3196. Ponnamperuma, C., R. M. Lemmon, E. L. Bennett and M. Calvin (1961). 'Deamination of Adenine by Ionizing Radiation.' Science 134(3472): 113-113. Prakash, S. and L. Prakash (2002). 'Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair.' Genes Dev 16(15): 1872-1883. Rubakhin, S. S., L. Li, T. P. Moroz and J. V. Sweedler (1999). 'Characterization of the Aplysia californica cerebral ganglion F cluster.' J Neurophysiol 81(3): 1251-1260. SantaLucia, J., Jr. (1998). 'A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics.' Proc Natl Acad Sci U S A 95(4): 1460-1465. Schaaper, R. M. (1993). 'Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli.' J Biol Chem 268(32): 23762-23765. Schuster, H. (1960). 'The reaction of nitrous acid with deoxyribonucleic acid.' Biochemical and Biophysical Research Communications 2(5): 320-323. Seeman, N. C., J. M. Rosenberg and A. Rich (1976). 'Sequence-specific recognition of double helical nucleic acids by proteins.' Proc Natl Acad Sci U S A 73(3): 804-808. Seidel, C. A. M., A. Schulz and M. H. M. Sauer (1996). 'Nucleobase-Specific Quenching of Fluorescent Dyes. 1. Nucleobase One-Electron Redox Potentials and Their Correlation with Static and Dynamic Quenching Efficiencies.' The Journal of Physical Chemistry 100(13): 5541-5553. Shapiro, R. and R. S. Klein (1966). 'The Deamination of Cytidine and Cytosine by Acidic Buffer Solutions. Mutagenic Implications*.' Biochemistry 5(7): 2358-2362. Shapiro, R. and S. H. Pohl (1968). 'Reaction of ribonucleosides with nitrous acid. Side products and kinetics.' Biochemistry 7(1): 448-455. Shinkai, A. and L. A. Loeb (2001). 'In vivo mutagenesis by Escherichia coli DNA polymerase I. Ile(709) in motif A functions in base selection.' J Biol Chem 276(50): 46759-46764. Singh, K. and M. J. Modak (2005). 'Contribution of Polar Residues of the J-Helix in the 3‘−5‘ Exonuclease Activity of Escherichia coli DNA Polymerase I (Klenow Fragment): Q677 Regulates the Removal of Terminal Mismatch.' Biochemistry 44(22): 8101-8110. Song, C., C. Zhang and M. Zhao (2011). 'Rapid and sensitive detection of DNA polymerase fidelity by singly labeled smart fluorescent probes.' Biosens Bioelectron 26(5): 2699-2702. Steitz, T. A. (1998). 'A mechanism for all polymerases.' Nature 391(6664): 231-232. Thompson, E. H., M. F. Bailey, E. J. van der Schans, C. M. Joyce and D. P. Millar (2002). 'Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.' Biochemistry 41(3): 713-722. Tolson, D. A. and N. H. Nicholson (1998). 'Sequencing RNA by a combination of exonuclease digestion and uridine specific chemical cleavage using MALDI-TOF.' Nucleic Acids Research 26(2): 446-451. Torimura, M., S. Kurata, K. Yamada, T. Yokomaku, Y. Kamagata, T. Kanagawa and R. Kurane (2001). 'Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base.' Anal Sci 17(1): 155-160. Tost, J. and I. G. Gut (2005). 'Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications.' Clin Biochem 38(4): 335-350. Watkins, J. N. E. and J. J. SantaLucia (2005). 'Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes.' Nucleic Acids Research 33(19): 6258-6267. Westergaard, O., D. Brutlag and A. Kornberg (1973). 'Initiation of deoxyribonucleic acid synthesis. IV. Incorporation of the ribonucleic acid primer into the phage replicative form.' J Biol Chem 248(4): 1361-1364. Wong, I., S. S. Patel and K. A. Johnson (1991). 'An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.' Biochemistry 30(2): 526-537. 李珈嘉, (2013)大腸桿菌內切酶五系統對亞黃嘌呤修復之試管中研究,國立台灣大學博士論文 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59144 | - |
| dc.description.abstract | DNA聚合酶校正活性在DNA複製忠誠度上扮演非常重要的角色。傳統偵測DNA聚合酶校正能力的方式包含放射線同位素標定和以電泳為基礎之分析方法。然而,這些方法普遍耗時且過程繁瑣,需要安全措施保護避免暴露於放射線。螢光法也被應用於校正活性的酵素動力分析,像是具有螢光特性的鹼基類似物2-Aminopurine (2-AP),其可被DNA聚合酶合成至DNA序列與鹼基形成配對,因此被廣泛用於試管中研究聚合酶校正活性。然而,2-AP除了可和thymidine形成配對外,也可能會與cytosine形成熱動力穩定配對,因而降低此方法的特異性,此外,有些DNA聚合酶會選擇性排斥2-AP:T。近年發展出的G-quadruplex也被應用於DNA聚合酶校正活性分析,但其序列設計上有一定的限制性。
MALDI-TOF質譜儀偵測DNA的高解析力已被應用於PinPoint assay,亦即使用沒有任何標記的雙去氧核醣核苷酸三磷酸(ddNTPs)進行引子延伸反應,隨後以MALDI-TOF質譜儀分析,得知基因特定位置的多形性。我們將這個概念延伸應用於聚合酶校正能力之分析。於此,我們設計了一種不需要任何同位素或是螢光標記,且簡單易做的方法測定校正活性。以寡核苷酸引子和模板股黏合,形成引子3’端不同的配對錯誤,DNA聚合酶在有ddNTPs或是一種dNTP的狀態下進行校正,校正過程中切除錯誤配對鹼基的中間產物和重新合成正確鹼基的產物經去鹽類處理後,進入MALDI-TOF質譜儀分析,透過引子質量變化鑑別鹼基配對錯誤是否被校正。 測試Klenow fragment (KF)對引子internal mismatch校正能力實驗中,發現隨著單一鹼基配對錯誤位置改變,校正的效能也有差異,在相同的反應條件下,位於引子3’端2至4個核苷酸位置的鹼基配對錯誤有45%~35%校正效能;然而距離引子3’端5個核苷酸位置的鹼基配對錯誤只剩9%校正效能,伴隨35%單一核苷酸延伸產物,位於引子3’端6至9個核苷酸位置的鹼基配對錯誤沒有明顯的校正產物被觀察到(<1%)。以質譜儀觀察KF對距離引子3’端兩個核苷酸位置之dI分別與A、C、T、G形成的配對錯誤校正情形,發現校正效能為T-I≧G-I >A-I >C-I,推測與鍵結穩定度有關。比較以單一dNTP或ddNTPs作為校正反應材料,發現前者校正效能較佳。以氯化銨(NH4Cl)取代含氯化鈉(NaCl)的試劑進行校正反應可降低頻譜圖雜訊;以鹽酸(HCl)取代酚(Phenol)作為校正反應終止方法,使得整體實驗流程更加簡單快速。在分析過程發現,此種透過質量改變來分析校正效能的方法,不僅可以探討校正效能也可觀察到中間產物,從中透露校正機制訊息,使得這個方法應用性更加廣泛。 | zh_TW |
| dc.description.abstract | Proofreading activity of DNA polymerase is very important factor in maintaining the high fidelity of genetic information during DNA replication. Traditional methods for detection of DNA polymerase proofreading ability include gel-based assays and radioisotopic labeling. However, these methods are generally time-consuming and labor-intensive and require necessary safety measures to avoid radioactive exposing. Fluorometric techniques have been used in kinetic analyses of proofreading activities. Intrinsically fluorescent nucleotide analogs such as 2-aminopurine (2-AP), which are incorporated into the product by DNA polymerase, have been extensively employed to study polymerase proofreading activity in vitro. However, these methods suffer from low specificity due to the ability of thermodynamically stable base pair formation between 2-AP and cytosine. Moreover, some DNA polymerases are able to selectively discriminate the 2-AP:T base pair from the normal A:T base pair.
The high resolution of MALDI-TOF MS (matrix-assisted laser desorption ionization time of flight mass spectrometry) for DNA detection has been employed in the PinPoint assay in which the primer extension reactions with four unlabeled ddNTPs followed by MALDI-TOF analysis identify the polymorphism at a given locus. We propose the concept of this approach can be modified to study DNA polymerase proofreading. Herein, we designed a non-labeled and non-radioisotope simple method to measure proofreading. An oligonucleotide primer is annealed to a template DNA forming a mismatched site and is proofread by a DNA polymerase in the presence of all four dideoxyribonucleotide triphosphates or single deoxyribonucleotide triphosphates. The proofreading excision intermediates and re-synthesis products of single base extension are denatured, desalted and subjected to MALDI-TOF mass spectrometry. The proofreading at the mismatched site is identified by the mass change of the primer. We examined proofreading of Klenow fragment with DNAs containing various base mismatches. Single mismatches at the primer terminus can be proofread efficiently. Internal single mismatches can also be proofread at different efficiencies, with the best correction for mismatches located 2 to 4 nucleotides from the primer terminus. For mismatches located 5 nucleotides from the primer terminus, there was partial correction and extension. No significant proofreading was observed for mismatches located 6 to 9 nucleotides from the primer terminus. Moreover, this method can apply to deoxyinosine (dI) proofreading assay as well. For deamination product of deoxyinosine at penultimate position of primer 3’ ends, all of A-I, C-I, G-I, and T-I can be processed by Pol I proofreading exonuclease, with efficiency being T-I≥G-I>A-I>C-I. The correction efficiency might be determined by the base-pair stability at primer-template junctions. We also tested the reaction using NH4Cl instead of NaCl in reaction buffer. We found Klenow fragment retains the same activity and a much improved MS spectra with less background noise. A protocol using HCl for reaction termination could avoid tedious phenol extraction process and should be amendable for automation for mass screening. In parallel, the mass spectrometric method also has the capability to study both excision intermediates and proofreading products making this assay highly versatile. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:16:42Z (GMT). No. of bitstreams: 1 ntu-106-R04424007-1.pdf: 2285259 bytes, checksum: 8a73538ff55c38e73fb27a0ced96da17 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 圖目次 VIII 表目次 IX 附錄目次 X 縮寫表 XI 1. 前言 1 1.1 大腸桿菌第一型DNA聚合酶 1 1.2 次黃嘌呤受損核酸的產生 4 1.3 基質協助雷射去吸附離子化-飛行時間質譜儀(MALDI-TOF MS) 5 1.4 聚合酶校正活性分析方法 6 1.5 研究動機 7 2. 材料與方法 9 2.1 DNA序列 9 2.2酵素 10 2.3核苷酸 10 2.4 MALDI-TOF MS 10 2.5校正能力測試 11 2.6校正效能百分比計算 11 3. 結果 13 3.1 DNA序列核苷酸數目與頻譜圖訊號強度關係 13 3.2 Klenow fragment對internal mismatch之校正能力分析 13 3.3倒數第二個位置之次黃嘌呤配對錯誤校正分析 14 3.4 ddNTPs與dNTP校正反應效能比較 15 3.5質譜儀檢測Klenow fragment剪切核苷酸活性評估 15 3.6調整反應環境優化頻譜圖 16 3.7終止校正反應方法比較 17 3.8 含NaCl試劑與NH4Cl試劑KF辨識配對錯誤鹼基能力與校正效能比較 17 4. 討論 19 5. 附錄 38 6. 參考文獻 43 | |
| dc.language.iso | zh-TW | |
| dc.subject | 次黃嘌呤核? | zh_TW |
| dc.subject | 質譜儀 | zh_TW |
| dc.subject | 第一型DNA聚合? | zh_TW |
| dc.subject | 複製校正 | zh_TW |
| dc.subject | 中間配對錯誤 | zh_TW |
| dc.subject | MALDI-TOF MS | en |
| dc.subject | deoxyinosine | en |
| dc.subject | internal mismatch | en |
| dc.subject | proofreading of replication | en |
| dc.subject | DNA polymerase I | en |
| dc.title | 單一核苷酸延伸法和質譜儀應用於第一型DNA聚合酶校正活性分析 | zh_TW |
| dc.title | DNA polymerase I proofreading assay using single nucleotide extension and MALDI-TOF Mass Spectrometry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇剛毅,楊雅倩,蔡芷季,許濤 | |
| dc.subject.keyword | 質譜儀,第一型DNA聚合?,複製校正,中間配對錯誤,次黃嘌呤核?, | zh_TW |
| dc.subject.keyword | MALDI-TOF MS,DNA polymerase I,proofreading of replication,internal mismatch,deoxyinosine, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU201701524 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
