Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5913
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賀曾樸(Paul T.P. Ho)
dc.contributor.authorHsi-Wei Yenen
dc.contributor.author顏士韋zh_TW
dc.date.accessioned2021-05-16T16:18:18Z-
dc.date.available2014-08-20
dc.date.available2021-05-16T16:18:18Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citationAndre, P., Ward-Thompson, D., & Barsony, M. 2000, in Protostars and Planets IV, ed. V., Mannings, A. P., Boss, & S. S., Russell (Tucson, AZ: Univ. of Arizona Press), 59 Q2
Andrews, S. M., Wilner, D. J., Hughes, A. M., et al. 2012, ApJ, 744, 162
Andrews, S. M., & Williams, J. P. 2007, ApJ, 659, 705
Arce, H. G., Shepherd, D., Gueth, F., Lee, C.-F., Bachiller, R., Rosen, A., & Beuther, H. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: Univ. of Arizona Press), 245
Arce, H. G., & Sargent, A. I. 2006, ApJ, 646, 1070
Arce, H. G., & Sargent, A. I. 2004, ApJ, 612, 342
Attard, M., Houde, M., Novak, G., et al. 2009, ApJ, 702, 1584
Bachiller, R. 1996, ARA&A, 34, 111
Bachiller, R., Guilloteau, S., Dutrey, A., Planesas, P., & Martin-Pintado, J. 1995, A&A, 299, 857
Bachiller, R., & Perez Gutierrez, M. 1997, ApJ, 487, L93
Bachiller, R., & Tafalla, M. 1999, in NATO ASIC Proc. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada &N. D. Kylafis (Dordrecht: Kluwer), 227
Basu, S. 1998, ApJ, 509, 229 Basu, S., & Mouschovias, T. C. 1994, ApJ, 432, 720
Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924
Bottinelli, S., Ceccarelli, C., Williams, J. P., & Lefloch, B. 2007, A&A, 463, 601
Brinch, C., Crapsi, A., Jorgensen, J. K., Hogerheijde, M. R., & Hill, T. 2007a, A&A, 475, 915
Brinch, C., Crapsi, A., Hogerheijde, M. R., & Jorgensen, J. K. 2007b, A&A, 461, 1037 Brinch, C., Jorgensen, J. K., & Hogerheijde, M. R. 2009, A&A, 502, 199 Cabrit, S., Goldsmith, P. F., & Snell, R. L. 1988, ApJ, 334, 196 Caselli, P., Benson, P. J., Myers, P. C., & Tafalla, M. 2002, ApJ, 572, 238
Cassen, P., & Moosman, A. 1981, ICARUS, 48, 353
Chandler, C. J., & Sargent, A. I. 1993, ApJ, 414, L29
Chandler, C. J., Terebey, S., Barsony, M., Moore, T. J. T., & Gautier, T. N. 1996, ApJ, 471, 308
Chen, X., Launhardt, R., & Henning, T. 2007, ApJ, 669, 1058
Chiang, H.-F., Looney, L. W., Tassis, K., Mundy, L. G., & Mouschovias, T. C. 2008, ApJ, 680, 474
Chiang, H.-F., Looney, L. W., & Tobin, J. J. 2012, ApJ, 756, 168 Chiang, H.-F., Looney, L. W., Tobin, J. J., & Hartmann, L. 2010, ApJ, 709, 470 Choi, M. 2005, ApJ, 630, 976 Choi, M. 2007, PASJ, 59, L41 Choi, M., Evans, N. J., II, Gregersen, E. M., & Wang, Y. 1995, ApJ, 448, 742 Claussen, M. J., Marvel, K. B., Wootten, A., & Wilking, B. A. 1998, ApJ, 507, L79
Curiel, S., Torrelles, J. M., Rodr ́ıguez, L. F., Go ́mez, J. F., & Anglada, G. 1999, ApJ, 527, 310
Dapp, W. B., Basu, S., & Kunz, M. W. 2012, A&A, 541, A35
Davidson, J. A., Novak, G., Matthews, T. G., et al. 2011, ApJ, 732, 97
Di Francesco, J., Myers, P. C., Wilner, D. J., Ohashi, N., & Mardones, D. 2001, ApJ, 562, 770
Dunham, M. M., Crapsi, A., Evans, N. J., II, Bourke, T. L., Huard, T. L., Myers, P. C., & Kauffmann, J. 2008, ApJS, 179, 249
Dutrey, A., Guilloteau, S., & Bachiller, R. 1997, A&A, 325, 758 Dutrey, A., Guilloteau, S., Prato, L., et al. 1998, A&A, 338, L63 Eisner, J. A. 2012, ApJ, 755, 23 Eisner, J. A., Hillenbrand, L. A., Carpenter, J. M., & Wolf, S. 2005, ApJ, 635, 396 Enoch, M. L., Corder, S., Dunham, M. M., & Duchˆene, G. 2009a, ApJ, 707, 103 Enoch, M. L., Evans, N. J., II, Sargent, A. I., & Glenn, J. 2009b, ApJ, 692, 973 Enoch, M. L., Young, K. E., Glenn, J., et al. 2006, ApJ, 638, 293
Evans, N. J., II, Dunham, M. M., Jorgensen, J. K., et al. 2009, ApJS, 181, 321 Evans, N. J., II, Lee, J.-E., Rawlings, J. M. C., & Choi, M. 2005, ApJ, 626, 919 Falgarone, E., Troland, T. H., Crutcher, R. M., & Paubert, G. 2008, A&A, 487, 247 Furlan, E., McClure, M., Calvet, N., et al. 2008, ApJS, 176, 184
Flower D. R. 2001, J. Phys. B: At. Mol. Opt. Phys., 34, 2731 Frerking, M. A., Langer, W. D., & Wilson, R. W. 1987, ApJ, 313, 320 Froebrich, D., Smith, M. D., Hodapp, K.-W., & Eisl ̈offel, J. 2003, MNRAS, 346, 163 G ̊alfalk, M., & Olofsson, G. 2007, A&A, 475, 281 Galli, D., & Shu, F. H. 1993, ApJ, 417, 220 Giannini, T., Nisini, B., & Lorenzetti, D. 2001, ApJ, 555, 40
Girart, J. M., & Acord, J. M. P. 2001, ApJ, 552, L63
Girart, J. M., Rao, R., & Marrone, D. P. 2006, Science, 313, 812
Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528
Green, S., & Chapman, S. 1978, ApJS, 37, 169
Gueth, F., & Guilloteau, S. 1999, A&A, 343, 571
Guilloteau, S., & Dutrey, A. 1998, A&A, 339, 467
Guilloteau, S., Dutrey, A., & Simon, M. 1999, A&A, 348, 570
Guilloteau, S., Dutrey, A., Pi ́etu, V., & Boehler, Y. 2011, A&A, 529, A105
Guilloteau, S., & Dutrey, A. 1994, A&A, 291, L23
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Hartigan, P., Kenyon, S. J., Hartmann, L., Strom, S. E., Edwards, S., Welty, A. D., & Stauffer, J. 1991, ApJ, 382, 617
Hartmann, L., & Kenyon, S. J. 1996, ARA&A, 34, 207
Harvey, D. W. A., Wilner, D. J., Lada, C. J., Myers, P. C., Alves, J. F., & Chen, H. 2001, ApJ, 563, 903
Harvey, D. W. A., Wilner, D. J., Myers, P. C., & Tafalla, M. 2003a, ApJ, 596, 383
Harvey, D. W. A., Wilner, D. J., Myers, P. C., Tafalla, M., & Mardones, D. 2003b, ApJ, 583, 809
Hayashi, M., Ohashi, N., & Miyama, S. M. 1993, ApJ, 418, L7 Hennebelle, P., & Fromang, S. 2008, A&A, 477, 9 Hirano, N., Ho, P. P. T., Liu, S.-Y., et al. 2010, ApJ, 717, 58
Hirano, N., Kameya, O., Kasuga, T., Hawegawa, T., Hayashi, S.S., Umemoto, T. 1991, in Molecular Clouds, ed.R.A. James & T.J. Miller (Cambridge: Cambridge Univ. Press), 115
Hirano, N., Kameya, O., Kasuga, T., & Umemoto, T. 1992, ApJ, 390, L85 Hirano, N., Kameya, O., Nakayama, M., & Takakubo, K. 1988, ApJ, 327, L69 Hirano, N., & Taniguchi, Y. 2001, ApJ, 550, L219 Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJ, 616, L1
Hogerheijde, M. R. 2001, ApJ, 553, 618
Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & van Langevelde, H. J. 1998, ApJ, 502, 315
Hull, C. L. H., Plambeck, R. L., Bolatto, A. D., et al. 2013, ApJ, 768, 159
Isella, A., Carpenter, J. M., & Sargent, A. I. 2009, ApJ, 701, 260
Jorgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861
Jorgensen, J. K., Bourke, T. L., Myers, P. C., Schoier, F. L., van Dishoeck, E. F., & Wilner, D. J. 2005, ApJ, 632, 973
Jorgensen, J. K., Bourke, T. L., Myers, P. C., Di Francesco, J., van Dishoeck, E. F., Lee, C.-F., Ohashi, N., Sch ̈oier, F. L., Takakuwa, S. Wilner, D. J., Zhang, Q. 2007, ApJ, 659, 479
Jorgensen, J. K., Sch ̈oier, F. L., & van Dishoeck, E. F. 2004a, A&A, 416, 603
Jorgensen, J. K., Hogerheijde, M. R., van Dishoeck, E. F., Blake, G. A., & Sch ̈oier, F. L. 2004b, A&A, 413, 993
Joos, M., Hennebelle, P., & Ciardi, A. 2012, A&A, 543, A128
Keene, J., Davidson, J. A., Harper, D. A., Hildebrand, R. H., Jaffe, D. T., Loewenstein, R. F., Low, F. J., & Pernic, R. 1983, ApJ, 274, L43
Keene, J., Hildebrand, R. H., Whitcomb, S. E., & Harper, D. A. 1980, ApJ, 240, L43 179
Kenyon, S. J., Calvet, N., & Hartmann, L. 1993, ApJ, 414, 676
Kitamura, Y., Momose, M., Yokogawa, S., Kawabe, R., Tamura, M., & Ida, S. 2002, ApJ, 581, 357
Kenyon, S. J., Calvet, N., & Hartmann, L. 1993, ApJ, 414, 676
Larson, R. B. 1969, MNRAS, 145, 271
Lee, C.-F. 2010, ApJ, 725, 712
Lee, C.-F., Hirano, N., Palau, A., Ho, P. T. P., Bourke, T. L., Zhang, Q., & Shang, H. 2009, ApJ, 699, 1584
Lee, C.-F., Ho, P. T. P., Beuther, H., Bourke, T. L., Zhang, Q., Hirano, N., & Shang, H. 2006, ApJ, 639, 292
Lee, C.-F., Ho, P. T. P., Hirano, N., Beuther, H., Bourke, T. L., Shang, H., & Zhang, Q. 2007a, ApJ, 659, 499
Lee, C.-F., Ho, P. T. P., Palau, A., Hirano, N., Bourke, T. L., Shang, H., & Zhang, Q. 2007b, ApJ, 670, 1188
Lee, C.-F., Ho, P. T. P., & White, S. M. 2005, ApJ, 619, 948
Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542, 925
Li, Z.-Y., Krasnopolsky, R., & Shang, H. 2011, ApJ, 738, 180 Lin, D. N. C., Hayashi, M., Bell, K. R., & Ohashi, N. 1994, ApJ, 435, 821 Lommen, D., Jorgensen, J. K., van Dishoeck, E. F., & Crapsi, A. 2008, A&A, 481, 141 Looney, L. W., Mundy, L. G., & Welch, W. J. 2003, ApJ, 592, 255 Lucas, R., & Liszt, H. 1998, A&A, 337, 246 Machida, M. N., Inutsuka, S.-I., & Matsumoto, T. 2011, PASJ, 63, 555 Marvel, K. B., Wilking, B. A., Claussen, M. J., & Wootten, A. 2008, ApJ, 685, 285
Masunaga, H., & Inutsuka, S.-i. 2000, ApJ, 531, 350
Mellon, R. R., & Li, Z.-Y. 2008, ApJ, 681, 1356
Mellon, R. R., & Li, Z.-Y. 2009, ApJ, 698, 922
Momose, M., Ohashi, N., Kawabe, R., Nakano, T., & Hayashi, M. 1998, ApJ, 504, 314
Moriarty-Schieven, G. H., Wannier, P. G., Mangum, J. G., Tamura, M., & Olmsted, V. K. 1995, ApJ, 455, 190
Moriarty-Schieven, G. H., & Snell, R. L. 1989, ApJ, 338, 952
Motte, F., & Andr ́e, P. 2001, A&A, 365, 440
Myers, P. C., Evans, N. J., II, Ohashi, N. 2000, in Protostars and Planets IV, ed. V., Mannings, A. P., Boss, & S. S., Russel (Tucson, AZ: Univ. of Arizona Press), 217
Myers, P. C., & Ladd, E. F. 1993, ApJ, 413, L47
Nakano, T., & Nakamura, T. 1978, PASJ, 30, 671
Nakazato, T., Nakamoto, T., & Umemura, M. 2003, ApJ, 583, 322
Nisini, B., et al. 1999, A&A, 343, 266
Ohashi, N., Hayashi, M., Ho, P. T. P., & Momose, M. 1997a, ApJ, 475, 211
Ohashi, N., Hayashi, M., Ho, P. T. P., Momose, M., & Hirano, N. 1996, ApJ, 466, 957
Ohashi, N., Hayashi, M., Ho, P. T. P., Momose, M., Tamura, M., Hirano, N., & Sargent, A. I. 1997b, ApJ, 488, 317
Padgett, D. L., Brandner, W., Stapelfeldt, K. R., et al. 1999, AJ, 117, 1490 Penston, M. V. 1969, MNRAS, 144, 425 P ́erez, L. M., Carpenter, J. M., Chandler, C. J., et al. 2012, ApJ, 760, L17 Pi ́etu, V., Dutrey, A., & Guilloteau, S. 2007, A&A, 467, 163
Qi, C., Ho, P. T. P., Wilner, D. J., et al. 2004, ApJ, 616, L11 181
Qi, C., Kessler, J. E., Koerner, D. W., Sargent, A. I., & Blake, G. A. 2003, ApJ, 597, 986
Reipurth, B., Heathcote, S., & Vrba, F. 1992, A&A, 256, 225 Saito, M., Kawabe, R., Kitamura, Y., & Sunada, K. 1996, ApJ, 473, 464 Saito, M., Sunada, K., Kawabe, R., Kitamura, Y., & Hirano, N. 1999, ApJ, 518, 334 Sault, R. J., & Noordam, J. E. 1995, A&AS, 109, 593
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco, CA: ASP), 433
Schuster, K. F., Harris, A. I., Anderson, N., & Russell, A. P. G. 1993, ApJ, 412, L67
Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., et al. 1993, PASP, 105, 1482
Shang, H. 2007, Ap&SS, 311, 25
Shinnaga, H., Phillips, T. G., Furuya, R. S., & Kitamura, Y. 2009, ApJ, 706, L226
Shirley, Y. L., Evans, N. J., II, Rawlings, J. M. C., & Gregersen, E. M. 2000, ApJS, 131, 249
Shu, F. H. 1977, ApJ, 214, 488
Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., & Lizano, S. 1994, ApJ, 429, 781
Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034
Spaans, M., Hogerheijde, M. R., Mundy, L. G., & van Dishoeck, E. F. 1995, ApJ, 455, L167
Stahler, S. W., Shu, F. H., & Taam, R. E. 1980, ApJ, 241, 637
Stutz, A, M., Rubin, M., Werner, M. W., Rieke, G. H., Bieging, J. H., Keene, J., Kang, M., Shirley, Y. L.; Su, K. Y. L., Velusamy, T., Wilner, D. J. 2008, ApJ, 687, 389
Surdej, J. 1977, A&A, 60, 303
Tafalla, M., Mardones, D., Myers, P. C., Caselli, P., Bachiller, R., & Benson, P. J. 1998, ApJ, 504, 900
Takakuwa, S., Saito, M., Lim, J., et al. 2012, ApJ, 754, 52
Takakuwa, S., Kamazaki, T., Saito, M., & Hirano, N. 2003, ApJ, 584, 818
Takakuwa, S., Kamazaki, T., Saito, M., Yamaguchi, N., & Kohno, K. 2007a, PASJ, 59, 1
Takakuwa, S., Ohashi, N., Bourke, T. L., Hirano, N., Ho, P. T. P., Jorgensen, J. K., Kuan, Y. J., Wilner, D. J., Yeh, S. C. C. 2007b, ApJ, 662, 431
Takakuwa, S., Ohashi, N., Ho, P. T. P., Qi, C., Wilner, D. J., Zhang, Q., Bourke, T. L., Hirano, N., Choi, M., Yang, J. 2004, ApJ, 616, L15
Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529
Tobin, J. J., Hartmann, L., Chiang, H.-F., et al. 2012a, Nature, 492, 83
Tobin, J. J., Hartmann, L., Bergin, E., et al. 2012b, ApJ, 748, 16
Tobin, J. J., Hartmann, L., Calvet, N., & D’Alessio, P. 2008, ApJ, 679, 1364
Tobin, J. J., Hartmann, L., Chiang, H.-F., et al. 2011, ApJ, 740, 45
Tobin, J. J., Looney, L. W., Mundy, L. G., Kwon, W., & Hamidouche, M. 2007, ApJ, 659, 1404
Tomita, Y., Saito, T., & Ohtani, H. 1979, PASJ, 31, 407 Troland, T. H., & Crutcher, R. M. 2008, ApJ, 680, 457 Turner, B. E., Chan, K.-W., Green, S., & Lubowich, D. A. 1992, ApJ, 399, 114 Ulrich, R. K. 1976, ApJ, 210, 377
van Kempen, T. A., et al. 2009, A&A, 507, 1425
van Kempen, T. A., Hogerheijde, M. R., van Dishoeck, E. F., Gu ̈sten, R., Schilke, P., & Nyman, L.- ̊A. 2006, A&A, 454, L75
Velusamy, T., & Langer, W. D. 1998, Nature, 392, 685
Vogel, S. N., Wright, M. C. H., Plambeck, R. L., & Welch, W. J. 1984, ApJ, 283, 655
Volgenau, N. H., Mundy, L. G., Looney, L. W., & Welch, W. J. 2006, ApJ, 651, 301
Wakelam, V., Ceccarelli, C., Castets, A., et al. 2005, A&A, 437, 149
Wilner, D. J., Myers, P. C., Mardones, D., & Tafalla, M. 2000, ApJ, 544, L69
Wilner, D. J., & Welch, W. J. 1994, ApJ, 427, 898
Winnewisser, G., Churchwell, E., & Walmsley, C. M. 1979, Modern Aspects of Mi- crowave Spectroscopy, 313
Wright, J. T., Fakhouri, O., Marcy, G. W., et al. 2011, PASP, 123, 412 Zhou, S., Evans, N. J., II, Koempe, C., & Walmsley, C. M. 1993, ApJ, 404, 232 Zinnecker, H., McCaughrean, M. J., & Rayner, J. T. 1998, Nature, 394, 862
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5913-
dc.description.abstract行星系統誕生於環繞著原恆星的盤狀結構。為了瞭解行星系統的形成機制,就必須研究此類盤狀結構是如何形成的。目前天文學家認為,此類盤狀結構是隨著原恆星的誕生一起形成的,而且其形成的機制與演化和角動量如何從周圍的氣體傳遞到盤狀結構上息息相關。因此,為了研究盤狀結構的形成與演化,我運用了 SMT, ASTE, SMA 和 ALMA 觀測了數個不同演化程度的原恆星,測量其周圍氣體的旋轉速度,研究了(1)從半徑 10,000 到 100 天文單位的角動量分佈,(2) 角動量分佈如何演化,(3)周圍氣體如何傳遞角動量給中央的盤狀結構。我的觀測結果顯示:(1)原恆星的周圍氣體有較小的角動量,而離原恆星較遠的氣體帶有比較大的角動量。(2)在比較老的原恆星周圍的氣體旋轉的速度比較快,並且遵循克卜勒運動;而在比較年輕的原恆星周圍的氣體,旋轉速度較慢,並且位於不同半徑的氣體都帶有相同的角動量。(3)原恆星演化到後期,周圍氣體塌縮的速率已經下降,並且周圍氣體只沿著數條氣流吸積到中央的盤狀結構上,與演化初期氣體會均向的流向中央有所不同。運用理論學家所提出的氣體塌縮理論,我建立了一套解析解的模型,計算了角動量分佈的演化,並利用這套模型解釋了上述的觀測結果。zh_TW
dc.description.abstractCircumstellar disks around young stellar objects are sites of planet formation. It is intriguing to understand the formation process of such circumstellar disks.
In the formation process of a low-mass star, a circumstellar disk is expected to form in the innermost (<100 AU) region of a protostellar envelope around a protostar at an early evolutionary stage, and envelope material infalls and feeds the central protostar and circumstellar disk. Formation and evolution of circumstellar disks are closely related to the mechanism of angular momentum transportation in protostellar envelopes from the envelope scale (thousands of AU) down to the disk scale (~100 AU). To study this mechanism, it is essential to reveal the kinematics of protostellar envelopes around representative protostellar sources and to compare the kinematics among sources at different evolutionary stages. Therefore, I have conducted SMT, ASTE, SMA and ALMA observations toward a sample of protostellar sources, and studied (1) the rotational motion on the scales from 10,000 AU to 100 AU around a Class 0 protostar B335, (2) evolution of the rotational motions on the scales of 1000-100 AU of a sample of Class 0 and I protostars, and (3) the connection between the disk and the protostellar envelope around a Class I protostar L1489 IRS.
To study rotational motion from large to small scales in protostellar sources, I have conducted observations in the millimeter C18O (2-1) and submillimeter CS (7-6) lines with the SMT, ASTE and SMA toward a prototypical Class 0 protostar, B335. In B335, the C18O (2-1) emission traces the protostellar envelope on the scales from ~10,000 AU to a few hundred AU, while the CS (7-6) emission shows a compact envelope component with a size of ~800 AU surrounded by an east-west elongated outflow component with a size of ~3000 AU. On the scale of 10,000 AU, the C18O envelope exhibits rotational motion with a specific angular momentum of ~2 x 10^{-3} km/s pc (V ~ 0.04 km/s at a radius of 9000 AU), comparable to those of other NH3 dense cores. On the scale of a few hundred AU, the C18O envelope exhibits infalling motion but no signature of rotational motion (V < 0.04 km/s at a radius of 370 AU). The CS (7-6) line, having a higher upper energy level and a higher critical density than the C18O (2-1) line, can trace an inner dense and warm region around protostars, where rotational velocity is likely higher than that in an outer region. On the scale of ~100 AU, the CS envelope shows rotational motion (V = 0.11 km/s at a radius of 110 AU) but no signature of infalling motion. These results show that the specific angular momenta of the rotational motion in B335 decrease from radii of 10,000 AU to a few hundred AU, and the specific angular momenta on the scale of a few hundred AU are one to two orders of magnitude lower than those in other Class I and II sources.
To study evolution of rotational motions of protostellar sources, I have conducted observations in the C18O (2-1) line with the SMA toward three Class 0, one Class 0/I, and two Class I protostars. My observational results show that two Class 0 sources, B335 and NGC 1333 IRAS 4B, do not exhibit detectable rotational motion on hundreds of AU scale, while L1527 IRS (Class 0/I) and L1448-mm (Class 0) exhibit rotational motions with radial profiles of V ~ r^{-1.0+/-0.2} and ~ r^{-1.0+/-0.1}, respectively. The other Class I sources, TMC-1A and L1489 IRS, exhibit the fastest rotational motions among the sample, and their rotational motions have flatter radial profiles of V ~ r^{-0.6+/-0.1} and ~ r^{-0.5+/-0.1}$, respectively. The rotational motions with the radial dependence of ~ r^{-1} can be interpreted as rotation with a conserved angular momentum in a dynamically infalling envelope, while those with the radial dependence of ~ r^{-0.5} can be interpreted as Keplerian rotation.
To study the connection between circumstellar disks and their surrounding protostellar envelopes, I have conducted observations in the 1.3 mm continuum and the 12CO (2-1), C18O (2-1), and SO (5_6-4_5) lines with the ALMA toward a Class I protostar L1489 IRS. A circumstellar disk in Keplerian rotation around L1489 IRS is clearly identified in the 12CO and C18O emission, and the central protostellar mass is estimated to be 2.0 Msun. In addition, there are arm-like structures attached to the circumstellar disk, and their kinematics cannot be explained by the Keplerian rotation. These non-Keplerian structures could trace accretion flow following parabolic trajectories toward the disk. The SO emission primarily traces the transitional regions between the accretion flow and the disk, which could be due to the enhancement in the SO abundance in the regions of accretion shocks.
From my observational results as well as those from literatures, I have found the kinematics of protostellar envelopes on 100-1000 AU scales around Class 0 and I protostars can be categorized into three groups, (1) infalling motion with little rotational motion around Class 0 protostars, (2) both infalling and rotational motions around Class 0 and I protostars, and (3) Keplerian rotation around Class I protostars. I propose that the three categories reflect the evolution sequence from infalling envelopes to formation of Keplerian disks. In an early stage of collapse of a dense core, the envelope material with a small angular momentum in the vicinity of the protostar collapses first, and the protostellar envelope on 100-1000 AU scales shows infalling motion but little rotational motion. As the expansion wave propagates outwardly, the envelope material with a larger angular momentum in an outer region start to collapse. As more angular momenta travel toward the center with the infalling motion, rotational velocities of the protostellar envelope on 100-1000 AU scales and the size of the central disk increase. With time, the protostellar envelope dissipates due to the mass ejection from outflows and the mass accretion onto the central protostar and disk. At a later evolutionary stage, the envelope material is infalling along few parabolic flows (not isotropically) due to the protostellar envelope is partially dissipated, and a Keplerian disk with an outer radius of hundreds of AU appears. Based on the inside-out collapse theory of protostellar envelopes, I have constructed an analytical model and computed evolution of radial profiles of rotational velocities, to interpret the observed results in the context of formation of large-scale (>100 AU) disk.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:18:18Z (GMT). No. of bitstreams: 1
ntu-102-F97244002-1.pdf: 10171375 bytes, checksum: 07348baaeb54426d4b89ba619997b260 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 ... i
Acknowledgment ... ii
摘要 ... iii
Abstract ... vi
List of Figures x
List of Tables ... xiv
1 Introduction ... 1
1.1 StarFormation ... 1
1.2 Evolutionary Scenario of Low-Mass Star Formation ... 1
1.3 Classification of Protostellar Sources and Young Stellar Objects ... 3
1.4 Recent Observational and Theoretical Studies of Keplerian Disks around Protostars and YSOs ... 5
1.5 Motivation of this Thesis ... 6
1.6 Outline of this Thesis ... 8
2 High-Velocity Jets and Slowly Rotating Envelope in B335 ... 10
2.1 Abstract ... 10
2.2 Introduction ... 11
2.3 Observation ... 13
2.4 Results ... 14
2.4.1 1.3 mm Continuum Emission ... 14
2.4.2 12CO (2–1) Emission ... 16
2.4.3 13CO (2–1) Emission ... 19
2.4.4 C18O (2–1) Emission ... 22
2.5 Discussion ... 25
2.5.1 High-velocity 12CO Component ... 25
2.5.2 The Origin and Kinematics of the C18O Emission ... 29
2.5.3 Infalling Motion in the Envelope ... 35
2.5.4 Non-Conserved Angular Momentum in B335 ... 36
2.6 Summary ... 40
3 Physical Conditions and Kinematics Traced by Millimeter and Submillimeter Lines on a Few Hundreds of AU Scale in B335 ... 43
3.1 Abstract ... 43
3.2 Introduction ... 44
3.3 Observation ... 46
3.4 Results ... 47
3.4.1 Single-dish, SMA, and the Combined Images in Millimeter C18O and Submillimeter CS Emissions ... 49
3.4.2 Velocity Structures ... 52
3.5 LVG Analyses ... 60
3.6 Discussion ... 67
3.6.1 Physical Conditions of the Outflow and Envelope ... 67
3.6.2 Rotation, Infall, and the Evolution of Protostellar Envelopes Traced by the Millimeter and Submillimeter Line Emissions ... 69
3.7 Summary ... 75
3.8 Appendix Combining SMA and Single-dish Data and Imaging Simulation of the Combing Process ... 77
4 Unveiling the Evolutionary Sequence from Infalling Envelopes to Keplerian Disks around Low-Mass Protostars ... 82
4.1 Abstract ... 82
4.2 Introduction ... 83
4.3 Sample ... 86
4.3.1 Overview ... 86
4.3.2 Individual Sources ... 88
4.4 Observations ... 91
4.5 Spatial and Kinematics Structures of the C18O (2–1) Emission ... 94
4.5.1 B335 ... 97
4.5.2 IRAS 4B ... 97
4.5.3 L1527 IRS ... 99
4.5.4 L1448-mm ... 101
4.5.5 TMC-1A ... 103
4.5.6 L1489 IRS ... 104
4.6 Analysis ... 105
4.6.1 Method to Derive Rotational Profiles ... 105
4.6.2 Uncertainties of the Measured Rotational Profiles ... 110
4.7 Discussion ... 114
4.7.1 Variations of the Rotational Motions around the Protostellar Sources ... 114
4.7.2 Observations and MHD Simulations of Disk Formation ... 121
4.7.3 Keplerian Disks around Class I Protostars ... 124
4.8 Summary ... 125
4.9 Appendix ... 127
4.9.1 1.3 mm Continuum Images ... 127
4.9.2 Measuring Rotational Profiles from Position–Velocity Diagrams ... 129
5 ALMA Observation of Accretion Flows onto the Keplerian Disk around a Class I protostar L1489 IRS ... 134
5.1 Abstract ... 134
5.2 Introduction ... 135
5.3 Observations ... 138
5.4 Results ... 139
5.4.1 1.3 mm Continuum Emission ... 139
5.4.2 12CO (2–1) Emission ... 140
5.4.3 C18O (2–1) Emission ... 142
5.4.4 SO (5_6-4_5) Emission ... 147
5.5 Analysis ... 150
5.5.1 Keplerian Disk Surrounded by a Torus in L1489 IRS ... 150
5.5.2 Infalling Gas Flows onto the Keplerian Disk ... 160
5.6 Discussion ... 166
5.7 Summary ... 169
6 Summary of this Thesis ... 171
7 Future Work ... 174
dc.language.isoen
dc.subject星際介質的動力學zh_TW
dc.subject恆星形成zh_TW
dc.subject原恆星zh_TW
dc.subject原恆星盤zh_TW
dc.subjectISM kinematicsen
dc.subjectstar formationen
dc.subjectprotostaren
dc.subjectcircumstellar disken
dc.title運用SMA與ALMA研究原恆星盤的形成與演化zh_TW
dc.titleAn Observational Scenario of Keplerian Disk Formation around Protostars Revealed with the SMA and ALMAen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee高桑繁久(Shigehisa Takakuwa),大橋永芳(Nagayoshi Ohashi),辜品高,陳惠茹,管一政
dc.subject.keyword恆星形成,原恆星,原恆星盤,星際介質的動力學,zh_TW
dc.subject.keywordstar formation,protostar,circumstellar disk,ISM kinematics,en
dc.relation.page186
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf9.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved