請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林江珍 | |
| dc.contributor.author | Wei-Ping Wang | en |
| dc.contributor.author | 王惟平 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:15:51Z | - |
| dc.date.available | 2017-07-20 | |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-17 | |
| dc.identifier.citation | 1. R. X. Dong, C. C. C., J. J. Lin, Amphiphilic silver-delaminated clay nanohybrids and their composites with polyurethane: physico-chemical and biological evaluations. J. Mater. Chem 2009, 19 (2184).
2. Pai, Y. H.; Ke, J. H.; Chou, C. C.; Lin, J. J.; Zen, J. M.; Shieu, F. S., Clay as a dispersion agent in anode catalyst layer for PEMFC. Journal of Power Sources 2006, 163 (1), 398-402. 3. Lan, Y. F.; Lin, J. J., Observation of Carbon Nanotube and Clay Micellelike Microstructures with Dual Dispersion Property. Journal of Physical Chemistry A 2009, 113 (30), 8654-8659. 4. Si, Y.; Samulski, E. T., Synthesis of water soluble graphene. Nano Letters 2008, 8 (6), 1679-1682. 5. Lin, J. J.; Chen, Y. M., Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates. Langmuir 2004, 20 (10), 4261-4264. 6. Tomalia, D. A., The dendritic state. Materials Today 2005, 8(3), 34-46. 7. H. L. Su, C. C. C., D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, J. J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 2009, 30 (5979). 8. J. J. Lin, C. C. C., M. L. Chiang, W. C. Tsai, Manipulating Assemblies of High-Aspect-Ratio Clays and Fatty Amine Salts to Form Surfaces Exhibiting a Lotus Effect. Adv. Mater 2006, 18 (3248). 9. C. M. Chang, J. C. C., Y. F. Lan, J. W. Lin, C. Y. Yeh, W. S. Jou, J. J. Lin, W. H. Cheng, J, High Electromagnetic Shielding of a 2.5-Gbps Plastic Transceiver Module Using Dispersive Multiwall Carbon Nanotubes. Lightwave Tech 2008, 26 (1256). 10. J. C. Chiu, Y. F. L., C. M. Chang, X. Z. Chen, C. Y. Yeh, C. K. Lee, G. R. Lin, J. J. Lin, W. H. Cheng, Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse. Optics Express 2010, 18 (3592). 11. R. J. Jeng, S. M. S., J. J. Lin, W. C. Su, Y. S. Chiu, Flame retardant epoxy polymers based on all phosphorus-containing components. Euro. Polym. J 2002, 38 (683). 12. Cheng, G.; Liu, Y.-L.; Wang, Z.-G.; Zhang, J.-L.; Sun, D.-H.; Ni, J.-Z., The GO/rGO–Fe 3 O 4 composites with good water-dispersibility and fast magnetic response for effective immobilization and enrichment of biomolecules. Journal of Materials Chemistry 2012, 22 (41), 21998-22004. 13. J. J. Lin, J. C. W., W. C. Tsai, J, Layered Confinement of Protein in Synthetic Fluorinated Mica via Stepwise Polyamine Exchange. Phys. Chem. B 2007, 111 (10275). 14. Matthew J. Allen, V. C. T., ‡ and Richard B. Kaner, Honeycomb Carbon: A Review of Graphene. Chem. Rev 2010, 110, 132-145. 15. Lu, X. K. Y., M. F.; Huang, H.; Ruoff, R. S, Tailoring graphite with the goal of achieving single sheets. Nanotechnology 1999, 10 (269). 16. Novoselov, K. S. G., A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A, Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (666). 17. L. Ma, B. Y., X. Qian, W. Yang, H. Pan, Y. Shi, L. Song, Y. Hu, Functionalized graphene/thermoplastic polyester elastomer nanocomposites by reactive extrusion-based masterbatch: preparation and properties reinforcement. Polym. Adv.Technol 2014, 25 (605). 18. H. Salavagione, M. G., G. Martınez, Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 2009, 42 (6331). 19. N. Kovtyukhova, P. O., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater 1999, 11 (771). 20. Ahn, H.; Kim, T.; Choi, H.; Yoon, C.; Um, K.; Nam, J.; Ahn, K. H.; Lee, K., Gelation of graphene oxides induced by different types of amino acids. Carbon 2014, 71, 229-237. 21. Hao, R.; Qian, W.; Zhang, L.; Hou, Y., Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications 2008, (48), 6576-6578. 22. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society 2008, 130 (18), 5856-5857. 23. Chen, P.-W.; Lee, C.-P.; Chang, L.-Y.; Chang, J.; Yeh, M.-H.; Lin, L.-Y.; Vittal, R.; Lin, J.-J.; Ho, K.-C., Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. RSC Advances 2013, 3 (17), 5871-5881. 24. Chang, L.-Y.; Lee, C.-P.; Huang, K.-C.; Wang, Y.-C.; Yeh, M.-H.; Lin, J.-J.; Ho, K.-C., Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (7), 3185-3191. 25. Shih, P.-T.; Dong, R.-X.; Shen, S.-Y.; Vittal, R.; Lin, J.-J.; Ho, K.-C., Transparent graphene–platinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2 (23), 8742-8748. 26. Yi-Fen Lan a, J.-J. L., Clay-assisted dispersion of organic pigments in water. Dyes and Pigments 2010, 90, 21-27. 27. Yi-Fen Lan, R.-H. L., ‡ and Jiang-Jen Lin, Aqueous Dispersion of Conjugated Polymers by Colloidal Clays and Their Film Photoluminescence. J. Phys. Chem. B 2010, 114, 1897–1902. 28. Yi-Fen Lan, B.-Z. H., Hsiao-Chu Lin, Yu-An Su, Ying-Nan Chan, and Jiang-Jen Lin, Poly(N-isopropylacrylamide)-Tethered Silicate Platelets for Colloidal Dispersion of Conjugated Polymers with Thermoresponsive and Photoluminescence Properties. Langmuir 2010, 26(13), 10572–10577. 29. Cseri, T. B., S.; Figueras, F.; Rizner, S, Benzylation of aromatics on ion-exchanged clays. Journal of Molecular Catalysis A: Chemical 1995, 98 (2), 101-107. 30. Pinnavaia, T. J., Intercalated Clay Catalysts. Science 1983, 220 (4595), 365-371. 31. Giannelis, E. P., Polymer-layered silicate nanocomposites: Synthesis, properties and applications. Applied Organometallic Chemistry 1998, 12 (10-11), 675-680. 32. Yi-Hsuan Lai, C.-W., Jian-GingChen, Chun-ChiehWang,; Jiang-Jen Lin, K.-F., Kuo-ChuanHo, Enhancing theperformance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar EnergyMaterials&SolarCells 2009, 93, 1860-1864. 33. Chien-Chia Chu, M.-L. C., Chung-Min Tsai, and Jiang-Jen Lin, Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts.Macromolecules 2005, 38, 6240-6243. 34. Ya-Chi Wang, T.-K. H., Shih-Huang Tung, Tzong-Ming Wu, Jiang-Jen Lin, Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. SCIENTIFIC REPORTS 2013, 3 (2621). 35. Rui-Xuan Dong, C.-C. C. a. J.-J. L., Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting. Journal of Materials Chemistry 2009, 19, 2184–2188. 36. S. Paul Singh, H. E.-K., Evaluation of a proposed test method to measure surface and volume resistance of static dissipative packaging materials. PACKAGING TECHNOLOGY AND SClENCE 1994, 7 (6), 283–289. 37. Kuan-Liang Wei, J.-Y. W., Yu-Min Chen, Yen-Chi Hsu, Jiang-Jen Lin, Easy Preparation of Crosslinked Polymer Films from Polyoxyalkylene Diamine and Poly(styrene–maleic anhydride) for Electrostatic Dissipation. Journal of Applied Polymer Science 2007, 103, 716–723. 38. Lin, M.-Y. Y. a. J.-J., Electrostatic Dissipating Properties of Poly(oxyethylene)amine-Modified Polyamides. Ind. Eng. Chem. Res. 1998, 37, 4284-4289. 39. Lin, J.-J.; Chen, Y.-C., Hydrophilicity, crystallinity and electrostatic dissipating properties of poly(oxyethylene)- segmented polyurethanes. Polym Int 1999, 48, 57-62. 40. Lin, J. J.; Sheen, Y. C.; Tseng, F. P.; Chang, F. C., Synthesis, characterization and electrostatic dissipating ability of poly(oxyethylene) block polyesteramides. Journal of Polymer Research 1999, 6 (4), 243–250. 41. Lin, J.-J.; Tseng, F.-P.; Chang, F.-C., Electrostatic dissipation and flexibility of poly(oxyalkylene)amine segmented epoxy derivatives. Polym Int 2000, 49, 387±394. 42. Lin, J.-J.; Young, M.-Y.; Shau, S.-M.; Cheng, I.-J., Preparation and electrostatic dissipating properties of poly(oxyalkylene)imide grafted polypropylene copolymers. Polymer 2000, 41 (7), 2405–2417. 43. Tang, W.; Liu, B.; Liu, Z.; Tang, J.; Yuan, H., Processing-dependent high impact polystyrene/styrene-butadiene-styrene tri-block copolymer/carbon black antistatic composites. Journal of Applied Polymer Science 2011, 123 (2), 1032–1039. 44. Mamunya, Y.; Boudenne, A.; Lebovka, N.; Ibos, L.; Candau, Y.; Lisunova, M., Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Composites Science and Technology 2008, 68 (9), 1981-1988. 45. Bilotti, E.; Zhang, H.; Deng, H.; Zhang, R.; Fu, Q.; Peijs, T., Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: The effect on electrical conductivity and tuneable sensing behaviour. Composites Science and Technology 2012, 74 (24), 85-90. 46. Lia, C.; Lianga, T.; Lu, W.; Tang, C.; Hu, X.; Cao, M.; Liang, J., Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology 2004, 64 (13-14), 2089-2096. 47. Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Yang, Y.; Wang, J.-W.; Lu, Z.-H.; Ji, G.-Y.; Yu, Z.-Z., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 2010, 51 (5), 1191-1196. 48. Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y., Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene. Composites Part B: Engineering 2015, 79, 444-450. 49. Verm, M.; Verma, P.; Dhawan, S. K.; Choudhary, V., Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Advances 2015, 5 (118), 97349–97358. 50. Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59085 | - |
| dc.description.abstract | 此次實驗探討同為片狀結構之石墨烯與奈米矽片之交互作用以應用於抗靜電。兩種片徑與親疏水性不同之碳材來源被作為實驗比較。經由在水中混合與超聲波震盪後,發現片徑較大、本質上較為疏水之碳材能有效的被奈米矽片分散於水中。此外,經由穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察,在水中及油相中,石墨烯/奈米矽片複合材可形成水包油及油包水這種類似微胞結構型態。而後導入先前實驗室自製之分散劑POEM之變形,短鏈POEM,用於更深入探討分散機制、增加分散性以及增加分散液之長效穩定性。將製備好之分散液與水性聚氨酯做混參、塗佈與乾燥後,形成石墨烯/奈米矽片/水性聚氨酯複合膜。單純石墨烯/水性聚氨酯複合膜發現到大部分石墨烯皆沉降於薄膜底部,形成不均勻之複合膜。若導入奈米矽片,發現奈米矽片可提升石墨烯在水性聚氨酯中之分散性。從薄膜之電阻值可觀察到導入石墨烯/奈米矽片複合材於水性聚氨酯中,可將電阻值從10的12次方降低至10的7次方,且石墨烯在固定比例下可均勻分散在水性聚氨酯中,達到抗靜電之功能。 | zh_TW |
| dc.description.abstract | The interaction between the platelet-like materials of graphene and nano silicate platelet (NSP) was studied for antistatic applications. Two different source of graphite, electronic graphite and CPC graphite-like materials were compared for illustrating the dispersion mechanism involving the effect of the silicate platelet (NSP) presence. It was discovered that CPC graphite-like with the properties of oleophilic could be well dispersed in aqueous medium. Furthermore, the amphiphilic property and irreversibly dispersion behaviour either in water or in toluene, depending on the exposing order, were achieved for the graphene/NSP nanohybrid. The mechanism involved micelle-like microstructure of oil-in-water and water-in-oil forms. Low molecular weight of POEM (s-POEM), compared with home-made dispersant poly(oxyethylene)-segmented imide (POEM), was synthesized for affecting the dispersibility and long term stability of graphene. As prepared graphene/NSP nanohybrid was solution blending with WPU to form graphene/NSP/WPU nanocomposites film. The comparison among graphene/WPU, NSP/WPU and graphene/NSP/WPU was made. In the absence of NSP, graphene showed sedimentation in the bottom of composite film and resulted in the uneven performance of sheet resistance. The presence of NSP prevented graphene from sedimentation, leading to the Graphene/NSP/WPU nanocomposites, shown the sheet resistance from larger than 1012 of pristine WPU, to 107 ohm/sq with uniform electrical property in both side of film. These graphene/NSP/WPU composites can well meet the requirement of antistatic uses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:15:51Z (GMT). No. of bitstreams: 1 ntu-106-R04549033-1.pdf: 4701070 bytes, checksum: 061d2d411b6382391d84a8ab6bdaabee (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................................ I
中文摘要 ...................................................................................................................... II Abstract ...................................................................................................................... III Table of Contents ........................................................................................................ V List of Tables .............................................................................................................VII List of Figures ......................................................................................................... VIII List of schemes ........................................................................................................... XI Chapter 1 Introduction ............................................................................................... 1 1.1 Introduction of Nanomaterials......................................................................... 1 1.2 Introduction of Dispersion Technique of nanomaterials ................................. 4 1.2.1 Introduction and Dispersion Technique of graphene............................ 4 1.2.2 Introduction of Geometric-Shape Inhomogeneity Factor for Dispersion ..................................................................................................................... 10 1.3 Introduction of natural clays and nanoscale silicate platelet (NSP) .............. 13 1.4 Application of anti-static material ................................................................. 16 1.4.1 Introduction of static electricity .......................................................... 16 1.4.2 Anti-static agent .................................................................................. 19 Chapter 2 Experimental Section .............................................................................. 30 2.1 Materials ........................................................................................................ 30 2.2 Synthesis of short chain POEM (s-POEM) ................................................... 30 2.3 Synthesis of graphene/NSP and graphene/s-POEM/NSP dispersion ............ 31 2.4 Amphiphilic Dispersion in Organic Solvents or Water ................................. 32 2.5 Preparation of graphene/NSP/WPU nanocomposites film ............................ 32 2.6 Characterizations ........................................................................................... 33 Chapter 3 Result and Discussion.............................................................................. 35 3.1 Dispersion of Graphene by Using Nano silicate platelets (NSP) .................. 35 3.1.1 Characterization of different graphite source ..................................... 35 3.1.2 Dispersion of Graphene in the presence of NSP ................................ 38 3.1.3 Amphiphilic Property for Dispersion ................................................. 42 3.2 Synthesis of short chain POEM (s-POEM) ................................................... 46 3.2.1 Comparison of s-POEM and POEM in graphene/NSP dispersion ..... 48 3.3 Antistatis application of graphene nanocomposite ........................................ 56 3.3.1 Antistatic property of graphene/WPU nanocomposite ....................... 56 3.3.2 Antistatic property of NSP/WPU nanocomposite .............................. 59 3.3.3 Antistatic property of graphene/NSP/WPU nanocomposite ............... 63 Chapter 4 Conclusion ................................................................................................ 70 Chapter 5 References ................................................................................................ 72 | |
| dc.language.iso | en | |
| dc.subject | 雙親性 | zh_TW |
| dc.subject | 奈米矽片 | zh_TW |
| dc.subject | 石墨烯 | zh_TW |
| dc.subject | 分散劑 | zh_TW |
| dc.subject | 水性聚氨酯 | zh_TW |
| dc.subject | 抗靜電 | zh_TW |
| dc.subject | short chain POEM | en |
| dc.subject | amphiphilic property | en |
| dc.subject | nano silicate platelet | en |
| dc.subject | graphene | en |
| dc.subject | antistatic | en |
| dc.subject | waterborne PU | en |
| dc.title | 分散型石墨烯/奈米矽片複合材料於抗靜電應用 | zh_TW |
| dc.title | Dispersion of Graphene/NSP nanohybrid for anti-static
applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 何永盛,王逸萍,李宗銘,賴育英 | |
| dc.subject.keyword | 石墨烯,奈米矽片,雙親性,分散劑,水性聚氨酯,抗靜電, | zh_TW |
| dc.subject.keyword | graphene,nano silicate platelet,amphiphilic property,short chain POEM,waterborne PU,antistatic, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201701606 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
