請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59059完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭淑芬 | |
| dc.contributor.author | Wei-Chemg Chen | en |
| dc.contributor.author | 陳偉成 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:47:26Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-20 | |
| dc.identifier.citation | [1] B. Steele, A. Heinzel, Nature 414 (2001) 345
[2] E. I. Tiffee, A. Weber, D. Herbstritt, Journal of the European Ceramic Society 21 (2001) 1805 [3] J. S. Yoon, R. Araujo, N. Grunbaum, L. Baque, A. Serquis, A. Caneiro, X. G. Zhang, H. Y. Wang, Applied Surface Science 254 (2007) 266 [4] M. Sase, J. Suzuki, K. Yashiro, T. Otake, A. Kaimai, T. Kawada, J. Mizusaki, H. Yugami, Solid State Ionics 177 (2006) 1961 [5] L. Baque, A. Serquis, N. Grunbaum, F. Prado, A. Caneiro, Material Research Society Symposium Proceedings 928 (2006) 181 [6] M. Bellino, J. Sacanell, D. Lamas, A. Leyva, N. Walsoe de Reca, Journal of the American Chemical Society 129 (2007) 3066 [7] M. D. Gross, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc, 154 (2007) B694 [8] J. Serra, H.-P. Buchkremer, Journal of Power Sources 172 (2007) 768 [9] Y. Xia, T. Armstrong, F. Prado, A. Manthiram, Solid State Ionics 130 (2000) 81 [10] V. V. Kharton, F. M. B. Marques and A. Atkinson, Solid state Ionics 174 (2004) 135 [11] A. J. Jacobson. Chem. Mater, 22 (2010) 660 [12] K. R. Kendall, C. Navas, J. K. Thomas, H. C. zurLoye, Solid State Ionics 82 (1995) 215 [13] E. Baur, H. Z. Preis, Elktrochem, 43 (1999) 727 [14] S. P. S. Badwal, F. T. Ciacchi, D. Milosevic, Solid State Ionics 136 (2000) 91 [15] Khtraon et al. Solid State Ionics. 174 (2004) 135 [16] H. L. Tuller, A. S. Nowick, J. Electrochem. Soc, 122 (1975) 255 [17] R. Doshi, V. L. Richards, J. D. Carter, X. P. Wang, M. J. Krumpelt, Electrochem. Soc. 146 (1999) 1273 [18] T. Inoue, T. Setoguchi, K. Eguchi, H. Arai, Solid State Ionics 35 (1989) 285 [19] H. Inaba and H. Tagaea, Solid state Ionics. 83 (1996) 1 [20] T. Kudo, H. Obayashi, J. Electrochem. Soc, 123 (1996) 415 [21] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52 (1992) 165 [22] M. Mogensen, N. M. Sammes, G. A. Tompsett, Solid State Ionics, 129 (2000) 63 [23] C. W. Sun, R. Hui and J. Roller, J. solid State Electrochem, 14 (2010) 1125 [24] B. C. H. Steele, Solid state Ionics. 129 (2000) 95 [25] M. Goedickemeier, L. J. Gauckler. J. Electrochem. Soc. 145 (1998) 414 [26] A. Atkinson. Solid state Ionics. 95 (1997) 249 [27] T. Takahashi, H. Iwahara, T. Arao, J. Appl. Electrochem, 5 (1995) 187 [28] M. G. Hapase, V. B. Tare, A. B. Biswas, J. Pure Appl. Phys, 5 (1967) 1 [29] A. Watanabe, Solid State Ionics, 176 (2005) 2423 [30] P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt, Solid State Ionics, 89 (1996) 179 [31] B. A. Boukamp, Nat. Mater, 2 (2003) 294 [32] J. C Ruiz-Morales, J. Canales-Vazquez, C. Savaniu, D. Marrero-Lopez, W. Z. Zhou and J. T. Lrvine, Nature, 439 (2006) 568 [33] Z. L. Zhan and S. A. Barnett, Science, 308 (2005) 844 [34] M. D. Gross, J. M. Vohs and R. J. Gorte, Solid-State Lett, 10 (2007) B65 [35] C. R. Xia and M. L. Liu, Adv. Mater, 14 (2002) 521 [36] C. R. Xia and M. L. Liu, Solid state Ionics, 144 (2001) 249 [37] Y. Liu, X. Tan, and K. Li, Catalysis Reviews, 48 (2006) 145 [38] B. C. H. Steele, Solid state Ionics, 129 (2000) 95 [39] C. Jin, J. Liu, W. M. Guo and Y. H. Zhang, J. power. Sources, 183 (2008) 506 [40] X. J Chen, Q. L. Liu, S. H. Chan, N. P. Brandon and K. A. Khor, Electrochem. Common. 9 (2007) 767 [41] E. P. Murray and S. A. Barnett. Solid state Ionics, 143 (2001) 265 [42] V. Dusastre and J. A. Kilner, Solid State ionics, 126 (1999) 163 [43] R. M. Ormerod, Chem. Soc. Rev, 32 (2003) 17 [44] H. Taimatsu, K Wada and H. Kaneko. J. Am. Ceram. Soc, 75 (1992) 401 [45] Z. G. Lu, J. Hardy, H. Templeton and J. Stevenson, J. Power. Sources, 196 (2011) 39 [46] Y. Liu, S. Zha and M. L Liu, Chem.Mater, 16 (2004) 3502 [47] S. I Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ionics, 181 (2010) 1713 [48] L. F. Nie, M. F. Liu, Y. J. Zhang and M. L. Liu, J. Power Sources, 195 (2010) 4704 [49] X. Y. Lou, S. Z. Wang, Z. Liu, L. Yang and K. L. Liu, Soid State Ionics, 180 (2009) 1285 [51] D. Ding, B.B. Liu, Z.N. Zhu, S. Zhou, C.R. Xia, Solid State Ionics. 179 (2008) 896-899 [52] Q. Zhu, B. Fan, Solid State Ionics. 176 (2005) 889-894. [53] F. J. Gardner, M. J. Day, N. P. Brandon, M. N. Pashley, J. Power Sources, 86 (2000) 122 [54] Q. L. Liu, K. A. Khor, S. H. Chan, X. J. Chen, J. Power Sources, 162 (2006) 1036 [55] M. J. Jorgensen, P. Holtappels, C. C. Appel. J. Appl. Electrochem, 30 (2000) 411 [56] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, L.J. Gauckler, Solid State Ionics, 131 (2000) 79 [57] B. C. H. Steele, Solid State Ionics. 129 (2000) 95 [58] T. S. Zhang, J. Ma, L. B. Kong, P. Hing, Y. J. Leng, S.H. Chan. J Power Sources, 124 (2003) 26 [59] G. B. Balazs, R. S. Glass, Solid State Ionics, 76 (1995) 155 [60] T. Yu, J. Joo, Y. I. Park, T. Hyeon. Angew Chem, 117 (2005) 7577 [61] R. R. Peng, C. R. Xia, Q. X. Fu, G.Y. Meng, D. K. Peng, Materials Letters. 56 (2002) 1043 [62] G. X. Wang, D. H. Bradhurst, H. K. Liu, S. X. Dou, Solid State Ionics. 120 (1999) 95 [63] J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, Solid State Ionics, 131 (2000) 79 [64] R. R. Peng, C. R. Xia, Q. X. Fu, G.Y. Meng, D. K. Peng, Materials Letters. 56 (2002) 1043 [65] S. Surble, G. Baldinozzi, M. Dolle, D. Gosset, C. Petot, G. Petot-Ervas, Ionics. 14 (2008) 33 [66] Y. D. Zhen, A. I. Y. Tok, S. P. Jiang, F. Y. C. Boey, J. Power Sources, 178 (2008) 69 [67] C. R. Xia, M. L. Liu, Solid State Ionics, 144 (2001) 249 [68] J. W. Fergus, J. Power Sources, 162 (2006) 30 [69] K. L. Duncan, K. T. Lee, E. D. Wachsman, J. Power Sources. 196 (2011) 2445 [70] C. Ding, H. Lin, K. Sato, K. Amezawa, T. Kawada, J. Mizusaki, T. Hashida, J. Power Sources. 195 (2010) 5487 [71] S. F. Wang, C. T. Yeh, Y. R. Wang, Y. F. Hsu. J. Power Sources. 201 (2012) 18 [72] E. P. Murray, M. J. Sever, S. A. Barnett, Solid State Ionics. 148 (2002) 27 [73] E.P. Murray, T. Tsai, S.A. Barnett, Solid State Ionics. 110 (1998) 235. [74] S. W. Zha, C. R. Xia, G. Y. Meng, J. Power Sources 115 (2003) 44 [75] D. J. Kim, J. Am. Ceram. Soc, 72 (1989) 1415 [76] S. J. Hong, A. V. Virkar, J. Am. Ceram. Soc, 78 (1995) 433 [77] J. G. Li, T. Ikegami, T. Mori, T. Wada, Chem. Mater, 13 (2001) 2921 [78] D. P. Fagg, J. C. C. Abrantes, D. Perez-Coll, P. Nu˜nez, V.V. Kharton, J. R. Frade, Electrochim. Acta 48 (2003) 1023 [79] D. J. Kim, J. Am. Ceram. Soc. 72 (1989) 1415 [80] S. Banerjee, K. Priolkar, and P. Sujatha Devi. Inorg. Chem. 50 (2011) 711 [81] B. C. H. Steele, Solid State Ionics 129 (2000) 95 [82] F. Wang, S. Chen, Q. Wang, S. Yu, S. Cheng, Catal. Today 97 (2004) 189 [83] F. Y. Wang, S.Y. Chen, S. Cheng, Electrochem. Commun, 6 (2004) 743. [84] S. Lubke, H. D. Wiemhofer, Solid State Ionics 117 (1999) 229 [85] X. Q. Sha, Z. Lu, X. Q. Huang, J. P. Miao, L. Jia, J. Alloys Compd, 424 (2006) 315 [86] L. R. Shah, B. Ali, H. Zhu, W. G. Wang, Y. Q. Song, H. W. Zhang, S. I. Shah, and J. Q. Xiao, J. Phys. Condens. Matter 21 (2009) 486004 [87] M. Naeem, S. K. Hasanain, M. Kobayashi, Y. Ishida, A. Fujimori, S. Buzby and S. I. Shah. Nanotechnology 17 (2006) 2675 [88] B. Wei, Z. Lu, X. Q. Huang, M. L. Liu, N. Li, W. H. Su. J Power Sources 176 (2008) 1 [89] F. S. Baumann, J. Fleig, H. U. Habermeier, J. Maier. Solid State Ionics, 177 (2006) 3187 [90] S. P. Simner, M. D. Anderson, J. E. Coleman, J. W. Stevenson, J Power Sources 161 (2006) 115 [91] H. Zhang, F. Zhao, F. L. Chen, C. R. Xia. Solid State Ionics, 192 (2011) 591 [92] E. P. Murray, M. J. Sever, S. A. Barnett. Solid State Ionics, 148 (2002) 27 [93] Y. J. Leng, S. H. Chan, Q. L. Liu. Int J Hydrogen Energy 33 (2008) 3808 [94] Z. P. Shao, S. M. Haile, Nature 431 (2004) 170 [95] S. B. Adler. Solid State Ionics 111 (1998) 125 [96] M. Koyama, C. J. Wen, T. Masuyama, J. Otomo, H. Fukunaga, K. Yamada, J Electochem Soc 148 (2001) A795 [97] V. Dusastre, J. A. Kilner, Solid State Ionics 126 (1999) 163 [98] E. P. Murray, M. J. Sever, S. A. Barnett. Solid State Ionics 148 (2002) 27 [99] C. Zhao, R. Liu, S. Wang, J. Power Sources 192 (2009) 552 [100] M. Liu, D. Dong, F. Zhao, J. Power Sources 182 (2008) 585 [101] T. Z. Sholklapper, H. Kurokawa, C. P. Jacobson, S. J. Visco, L. C. De Jonghe, Nano Lett. 7 (2007) 2136 [102] Z. Y. Jiang, C. R. Xia, F. L. Chen, Electrochim. Acta 55 (2010) 3595 [103] S. P. Jiang, W. Wang, J. Electrochem. Soc. 152 (2005) 1398 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59059 | - |
| dc.description.abstract | 本博士論文主要以GDC摻雜鋯金屬當作複合式電解質,利用Pichini方法合成粉體材料,並測量其物理性質與電性表現,主要分為三個部分。第一部分是利用不同檸檬酸對總金屬離子的比例去合成粉體材料,依不同當量比命名為 1-GDC、1.5-GDC和2-GDC。利用XRD、SEM、TEM和TGA測量其物理性質,實驗結果發現用1.5倍當量檸檬酸對總金屬莫爾比合成粉體時,在140°C烘箱下有自燃現象的發生,經TEM儀器觀察下,1.5-GDC粉體比1-GDC和2-GDC有最小的顆粒大小與良好的分散性,將粉體壓成錠狀並燒瑕到1500°C測量其導電度,1.5-GDC比1-GDC和2-GDC在500-700°C測量下有較好的導電度,1.5-GDC電解質在700°C下其導電度可達到3.26 S/m。單電池的測試以60%NiO當作陽極,6428-LSCF當作陰極,用1.5-GDC當作電解質,氣體流速控制在100 ml/min氫氣,160 ml/min空氣,在650°C可測到最大功率為628 mW/cm2和較高的開路電壓。
第二部分以鋯離子部分取代電解質CGO中的鈰離子和鋯跟鈣離子共摻雜CGO中的鈰離子,材料化學式為Ce0.8-xGd0.2Zr0.1-xO2 (x-CGZrO)和Ce0.8-xGd0.2Zr0.1-xCayO2 (xy-CGZrCaO)。經XRD測量發現x-CGZrO和xy-CGZrCaO粉體在700°C瑕燒下其結構為螢石結構,並無任何雜相的生成,在TEM觀察下發現x-CGZrO和xy-CGZrCaO顆粒大小皆比R-GDC要來的小,導電度的測量發現,共摻雜系統中22CGZrCaO在700°C下有最好的導電值5.15 S/m,比單摻雜的3CGZrO還要好( 3.26 S/m ),製備單電池時,用x-CGZrO與xyCGZrMO當作電解質,3-CGZrO當作電解質有最大電功率725 mW/cm2,其歐姆阻抗值最低可到0.179 Ωcm2。接著第三部分是附合式陰極的研究,利用先前做到最好氧離子導電度的3-CGZrO、22CGZrMgO和22-CGZCaO去複合LSCF陰極,複合的重量比20 wt %,複合式陰極表示為20%-3CGZrO/LSCF、20%-22CGZrMgO/LSCF和20%-22CGZrCaO-LSCF。複合式陰極製備用物理混合法,並接著做成單電池,在650°C 下測量發現已20%-22CGZrCaO-LSCF 當作複合是陰極友最佳的電功率827 mW/cm2,且其電極阻抗值最小可達到0.128 Ωcm2,比LSCF當陰極製備的單電池還要來的好 ( PPD =628 mW/cm2 )。 | zh_TW |
| dc.description.abstract | In the first parts, Gd-doped CeO2 (abbreviated GDC) with the composition Ce0.8Gd0.2O2-d was synthesized by Pechini method using different amounts of citric acid as the chelating agent. The molar citric acid to total metal ion ratios (R values) were varied from 1, 1.5 to 2. It was noticed that citric acid could help self-ignition when the ratios were 1.5 and 2. The transmission electron microscopic images showed that 1.5-GDC prepared with R= 1.5 contained smaller and more homogeneously distributed particles than the other two samples (1-GDC and 2-GDC). As a result, the electrolyte pellet prepared by sintering 1.5-GDC powders at 1500°C exhibited higher relatively density than those made from 1-GDC and 2-GDC, and it gave higher oxide ion conductivity at 500-700°C. Anode-supported SOFC single cells were fabricated by a simple co-pressing method using 60%NiO/Ce0.8Gd0.2O2 as anode and 6428-LSCF as cathode. The single cell prepared with 1.5-GDC electrolyte also gave highest power density and open circuit voltage.
In the second parts, the Gd-Zr co-doped and Gd-Zr-Ca co-doped ceria was investigated. Ce0.7Gd0.2Zr0.1-xO2 (x-CGZrO) and Ce0.8-x-yGd0.2ZrxCayO2 (xy-CGZrCaO) powders were synthesized by Pechini method. The XRD results showed that Gd-Zr and Gd-Zr-Ca co-doped ceria calcined at 700°C had fluorite structure and smaller particle sizes than pristine GDC. Among these co-doped ceria, 22CGZrCaO has the highest oxide ion conductivity (5.15 S/m at 700°C). Moreover, Ce0.76Gd0.2Zr0.02Ca0.02O2-d sintered at 1500°C exhibited higher oxide ionic conductivity (5.12 S/m 700°C) than Ce0.8Gd0.2O2-d sintered at 1500°C (3.26 S/m). The single cell prepared with 3CGZrO electrolyte gave highest power density (725 mWcm2) and lowest ohmic resistance (0.179 Ωcm2). In the third parts, the x-GDC/LSCF (x= 10-50%), 20%-3CGZrO, 20%- 22CGZrMgO/LSCF, and 20%-22CGZrCaO/LSCF composite cathodes are investigated for the potential cathode for IT-SOFCs. The optimal content of GDC in composite cathode was determined to 20 wt%, which could give the higher maximum power density (827 mWcm2) than pure LSCF cathodes (628 mWcm2) at 650°C. In addition, among these composite cathodes, 20%-22CGZrCaO/LSCF results in the lowest polarization resistance (0.128 Ωcm2) and highest single cell performance (827 mWcm2). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:47:26Z (GMT). No. of bitstreams: 1 ntu-102-D97223132-1.pdf: 8218050 bytes, checksum: cfe9b97b0edb7a4962c69e1b86220325 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III Content V Figure index X Table index XVIII Chapter 1 Introduction 1 1.1 Fuel cell 1 1.2 Solid oxide fuel cell 3 1.2.1 Work Principle of SOFC 3 1.2.2 Develop of Electrolyte 5 1.2.3 Anode 11 1.2.4 Cathode 13 1.3 Summaries of Literature Review 18 1.4 Motivation 19 Chapter 2 Chemicals and Instruments 21 2.1 Chemicals 21 2.2 Characterization and Instruments 22 2.2.1 Powder X-ray Diffraction 22 2.2.2 Relative density by Archimedes method 23 2.2.3 SEM and TEM 23 2.2.4 XPS measurement 26 2.2.5 Ac Impedance instrument 27 2.2.6 Solid Oxide Fuel cell Tester 29 Chapter 3 Effect of chelating agent in preparing GDC electrolyte for IT-SOFC 31 3.1 Introduction 31 3.2 Experimental 33 3.2.1 Synthesis of electrolyte powder 33 3.2.2 Single Cell Fabrication 34 3.2.3 Characterization 35 3.3 Results and discussion 36 3.3.1 TGA and XRD analysis 36 3.3.2 TEM and SEM of powders 39 3.3.3 Relativity density and Electrical conductivity 42 3.3.4 Single cell structure 44 3.3.5 The effect of various thickness of 1.5-GDC on single cell 48 3.3.6 AC impedance of various thickness of 1.5-GDC electrolyte on single cell 53 3.3.7 Performance of single cell 55 3.3.8 AC impedance of R-GDC electrolytes on single cell 58 3.4 Summaries 62 Chapter 4 Properties and electrochemical properties of Zr and Ca co-doped GDC electrolyte for SOFC 64 4.1Introduction 64 4.2 Experimental 65 4.2.1 Synthesis of powders 66 4.2.2 Electrochemical measurement 67 4.3 Results and Discussion 68 4.3.1 XRD analysis 68 4.3.2 Cross Sectional of SEM Images 73 4.3.3 Conductivity characterization 75 4.3.4 XRD of CGZrCaO powders 77 4.3.5 Relative densities and conductivities of CGZrCaO powders 82 4.3.6 XPS study 84 4.3.7 TEM and SEM of CGZrMO materials 86 4.3.8 Single cell performances with CGZrO and CGZrMO electrolytes 90 4.4 Summaries 93 Chapter 5 Preparation and electrochemical performance of La0.6Sr0.4Co0.8Fe0.2O3-d-Ce0.8Gd0.2O2 composite cathode for IT-SOFC 95 5.1 Introduction 95 5.2 Experimental 97 5.2.1 Preparation of the GDC-LSCF composite cathode 97 5.2.2 Preparation of the GDC-impregnated LSCF cathode 97 5.2.3 Electrochemical measurement 98 5.3 Results and Discussion 99 5.3.1 Effect of GDC Content in Composited Cathode 99 5.3.2 Effect of GDC Content in Composited Cathode on Single Cell Performance 103 5.3.3 Effect of CGZrM (M=Mg, Ca) Content in Composited Cathode 106 5.3.4 Effect of CGZrM (M=Mg, Ca) Content in Composited Cathode on single cell performance 109 5.3.5 Effect of the GDC-impregnated LSCF cathode 116 5.3.6 Effect of the GDC-impregnated LSCF cathode on single cell performance 119 5.4 Summaries 121 Chapter 6 Conclusions 123 6.1 Conclusions 123 6.1.1 Effect of chelating agent in preparing GDC electrolyte for IT-SOFC 123 6.1.2 Effect of Zr and Ca co-doped GDC electrolyte for SOFC 123 6.1.3 GDC/LSCF, 3CGZrO/LSCF, 22CGZrMgO/LSCF, and 22CGZrCaO/LSCF composite cathode 124 6.2 Future Work 124 References 126 | |
| dc.language.iso | en | |
| dc.subject | 鋯金屬 | zh_TW |
| dc.subject | 導電度 | zh_TW |
| dc.subject | 相對密度 | zh_TW |
| dc.subject | 電功率 | zh_TW |
| dc.subject | 阻抗值 | zh_TW |
| dc.subject | electrolyte | en |
| dc.subject | conductivity | en |
| dc.subject | power density | en |
| dc.subject | composite cathode | en |
| dc.subject | relative density | en |
| dc.title | 以氧化鋯複合氧化鈰電解質中溫固態氧化物燃料電池之製備與性質研究 | zh_TW |
| dc.title | Fabrication, Characterization and Application of Zr-doped Ceria-Based Materials in IT-SOFC | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 劉如熹,邱靜雯,王錫福,蔡大翔,李瑞益 | |
| dc.subject.keyword | 導電度,相對密度,電功率,阻抗值,鋯金屬, | zh_TW |
| dc.subject.keyword | conductivity,power density,electrolyte,relative density,composite cathode, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.03 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
