Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59058
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鼎偉
dc.contributor.authorChieh-Hsin Yuen
dc.contributor.author游傑新zh_TW
dc.date.accessioned2021-06-16T08:47:22Z-
dc.date.available2013-09-02
dc.date.copyright2013-09-02
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citation[1] D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin
films of carbon nanotubes, graphene, and metallic nanostructures,” Advanced Materials,
vol. 23, no. 13, pp. 1482–1513, 2011.
[2] M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin
film solar cell modules,” Energy Environ. Sci., vol. 4, pp. 131–134, 2011.
[3] H.-K. Kim, D.-G. Kim, K.-S. Lee, M.-S. Huh, S. Jeong, K. Kim, and T.-Y. Seong,
“Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting
organic light-emitting diodes,” Applied Physics Letters, vol. 86, no. 18, pp. 183 503–
183 503, 2005.
[4] (2013, 8). [Online]. Available: http://www.greentechmedia.com/articles/read/smgfiles-
55m-ipo-plans-indium-stockpile-1406
[5] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R.
Reynolds, D. B. Tanner, A. F. Hebard et al., “Transparent, conductive carbon nanotube
films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004.
[6] S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, and H. Peng, “A new and
general fabrication of an aligned carbon nanotube/polymer film for electrode applications,”
Advanced Materials, vol. 23, no. 40, pp. 4707–4710, 2011.
[7] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R.
Kim, Y. I. Song et al., “Roll-to-roll production of 30-inch graphene films for transparent
electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, 2010.
[8] J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Materials
today, vol. 13, no. 3, pp. 52–59, 2010.
[9] B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and
conductive electrodes based on unpatterned, thin metal films,” Applied Physics Letters,
vol. 93, no. 22, pp. 223 304–223 304, 2008.
[10] D. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent
electrodes based on ultrathin metals,” Optics letters, vol. 34, no. 3, pp. 325–327,
2009.
[11] L.-j. Meng and M. Dos Santos, “Properties of indium tin oxide films prepared by rf
reactive magnetron sputtering at different substrate temperature,” Thin Solid Films,
vol. 322, no. 1, pp. 56–62, 1998.
[12] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J.
Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting
films: extremely high dc to optical conductivity ratios,” ACS nano, vol. 3,
no. 7, pp. 1767–1774, 2009.
[13] P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive
electrodes in optoelectronic devices,” Nano letters, vol. 10, no. 8, pp. 2944–
2949, 2010.
[14] T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical
transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp.
667–669, 1998.
[15] C. Genet and T. Ebbesen, “Light in tiny holes,” Nature, vol. 445, no. 7123, pp. 39–46,
2007.
[16] L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,”
J. Opt. Soc. Am. A, vol. 14, no. 10, pp. 2758–2767, Oct 1997.
[17] L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical
transmission of periodic subwavelength holes in a metal film,” Physical review
letters, vol. 86, no. 6, p. 1110, 2001.
[18] P. Bell, J. Pendry, L. M. Moreno, and A. Ward, “A program for calculating photonic
band structures and transmission coefficients of complex structures,” Computer
physics communications, vol. 85, no. 2, pp. 306–322, 1995.
[19] S. G. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties
on extraordinary optical transmission through hole arrays,” Physical Review
B, vol. 77, no. 7, p. 075401, 2008.
[20] F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing
through subwavelength apertures,” Reviews of Modern Physics, vol. 82, no. 1, p.
729, 2010.
[21] F. de Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on
the scattering of light and surface plasmon polaritons by arrays of holes and dimples
in a metal film,” New Journal of Physics, vol. 10, no. 10, p. 105017, 2008.
[22] F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in onedimensional
periodically nanostructured metals,” Physical Review B, vol. 66, no. 15,
p. 155412, 2002.
[23] J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides:
Towards chip-scale propagation with subwavelength-scale localization,” Physical
Review B, vol. 73, no. 3, p. 035407, 2006.
[24] P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical
Review B, vol. 6, no. 12, p. 4370, 1972.
[25] A. Hessel and A. Oliner, “A new theory of wood’s anomalies on optical gratings,”
Applied Optics, vol. 4, no. 10, pp. 1275–1297, 1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59058-
dc.description.abstract現代科技文明中,透明導電電極廣泛地應用在各式光電元件中。目
前主流透明電極為金屬氧化物材料,其中又以氧化銦錫為最大宗。但
是氧化銦錫含量稀有,以致於價格居高不下,因此相關產業不斷嘗試
使用其他低成本的材料來取代氧化銦錫作為導電電極。本篇論文嘗試
使用奈米結構金屬薄膜作為透明導電電極,將金屬的表面電漿特性列
入考量,利用耦合模態法分析奈米結構金屬薄膜的光穿透特性,並藉由簡化模型定義了奈米微結構的等效片電阻。以這些分析結果,我們提出一個設計結構範例,其光穿透率從可見光區域到紅外線區域都在90% 以上且片電阻的值可低至0.015662 Ω/sq。同時,我們也模擬了多狹縫週期和不同金屬作為材料的結果。和其他材料做比較,奈米結構金屬薄膜具有取代氧化銦錫作為透明導電電極的潛力。藉由理論分析,我們提出了奈米結構金屬薄膜作為透明導電電極的設計準則。綜合本篇論文的討論結果,我們能夠使用具有奈米結構的金屬薄膜設計一個
可用的透明電極,其具有高光穿透率以及低片電阻,若可結合現代製程及使用低價金屬則可以有效降低生產成本。
zh_TW
dc.description.abstractTransparent electrodes are widely used in optoelectronic devices. Nowadays, the commonly used materials for this purpose are metal oxides. Tin doped indium oxide (ITO) is the dominant material in this category. The problems of ITO mainly centered on its scarcity of supply, and its ceramic nature. Thus, there has been interest in replacing them. In this study, we demonstrate theoretical analysis of optical properties of nanostructure metal films with coupled-mode method and its effective sheet resistance defined by a simplified model. The surface plasmon properties of metal are considered. An example of transmission over 90% across visible range to IR range and Rs of 0.015662 Ω/sq is reported. The structures with more than one slit in a period and with different metal are also calculated in our formalism. The nanostructure metal films shows potential for replacing ITO as transparent electrodes when comparing with other materials. By the theoretical analysis, we provide design principles of nanostructure metal film-based transparent electrodes. Concluding the results of this thesis, we are able to design a qualified transparent electrode, which possess high transparency and low sheet resistance. If it is possible to combine modern process and use low priced metal the production cost can be lowered greatly.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:47:22Z (GMT). No. of bitstreams: 1
ntu-102-R00941096-1.pdf: 1866115 bytes, checksum: 116a21e345c15e6d3bd2760f7060f13b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝i
中文摘要ii
Abstract iii
Contents iv
List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Transparent electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transmission through subwavelength apertures . . . . . . . . . . . . . . 4
2 Simulation tools for periodic systems 6
2.1 Coupled-mode method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Plasmon waveguide mode . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Multi-slit periodic structure . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Single-slit periodic structure . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Ultrathin metal film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Effective sheet resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Simulation results and discussion 22
3.1 Metal nano-slit grating . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Comparing with ultrathin metal film . . . . . . . . . . . . . . . . . . . . 42
3.3 Electrodes made of different metal . . . . . . . . . . . . . . . . . . . . . 45
3.4 More than one slit in a period . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Conclusions 54
5 Future work 56
References 58
dc.language.isoen
dc.subject透明電極zh_TW
dc.subject表面電漿zh_TW
dc.subject穿透zh_TW
dc.subject耦合模態法zh_TW
dc.subject光柵zh_TW
dc.subjecttransparent electrodeen
dc.subjectsurface plasmonen
dc.subjecttransmissionen
dc.subjectcoupled-mode methoden
dc.subjectgratingen
dc.title具有奈米結構的金屬薄膜作為透明電極之理論分析zh_TW
dc.titleTheoretical Analysis of Nanostructure Metal Films as Transparent
Electrodes
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君,林晃巖
dc.subject.keyword透明電極,表面電漿,穿透,耦合模態法,光柵,zh_TW
dc.subject.keywordtransparent electrode,surface plasmon,transmission,coupled-mode method,grating,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved