請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鼎偉 | |
| dc.contributor.author | Chieh-Hsin Yu | en |
| dc.contributor.author | 游傑新 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:47:22Z | - |
| dc.date.available | 2013-09-02 | |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-20 | |
| dc.identifier.citation | [1] D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin
films of carbon nanotubes, graphene, and metallic nanostructures,” Advanced Materials, vol. 23, no. 13, pp. 1482–1513, 2011. [2] M. W. Rowell and M. D. McGehee, “Transparent electrode requirements for thin film solar cell modules,” Energy Environ. Sci., vol. 4, pp. 131–134, 2011. [3] H.-K. Kim, D.-G. Kim, K.-S. Lee, M.-S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Applied Physics Letters, vol. 86, no. 18, pp. 183 503– 183 503, 2005. [4] (2013, 8). [Online]. Available: http://www.greentechmedia.com/articles/read/smgfiles- 55m-ipo-plans-indium-stockpile-1406 [5] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard et al., “Transparent, conductive carbon nanotube films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004. [6] S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, and H. Peng, “A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications,” Advanced Materials, vol. 23, no. 40, pp. 4707–4710, 2011. [7] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, no. 8, pp. 574–578, 2010. [8] J. K. Wassei and R. B. Kaner, “Graphene, a promising transparent conductor,” Materials today, vol. 13, no. 3, pp. 52–59, 2010. [9] B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Applied Physics Letters, vol. 93, no. 22, pp. 223 304–223 304, 2008. [10] D. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Optics letters, vol. 34, no. 3, pp. 325–327, 2009. [11] L.-j. Meng and M. Dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature,” Thin Solid Films, vol. 322, no. 1, pp. 56–62, 1998. [12] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver nanowire networks as flexible, transparent, conducting films: extremely high dc to optical conductivity ratios,” ACS nano, vol. 3, no. 7, pp. 1767–1774, 2009. [13] P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano letters, vol. 10, no. 8, pp. 2944– 2949, 2010. [14] T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, no. 6668, pp. 667–669, 1998. [15] C. Genet and T. Ebbesen, “Light in tiny holes,” Nature, vol. 445, no. 7123, pp. 39–46, 2007. [16] L. Li, “New formulation of the fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A, vol. 14, no. 10, pp. 2758–2767, Oct 1997. [17] L. Salomon, F. Grillot, A. V. Zayats, and F. De Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Physical review letters, vol. 86, no. 6, p. 1110, 2001. [18] P. Bell, J. Pendry, L. M. Moreno, and A. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Computer physics communications, vol. 85, no. 2, pp. 306–322, 1995. [19] S. G. Rodrigo, F. Garcia-Vidal, and L. Martin-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Physical Review B, vol. 77, no. 7, p. 075401, 2008. [20] F. J. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Reviews of Modern Physics, vol. 82, no. 1, p. 729, 2010. [21] F. de Leon-Perez, G. Brucoli, F. Garcia-Vidal, and L. Martin-Moreno, “Theory on the scattering of light and surface plasmon polaritons by arrays of holes and dimples in a metal film,” New Journal of Physics, vol. 10, no. 10, p. 105017, 2008. [22] F. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in onedimensional periodically nanostructured metals,” Physical Review B, vol. 66, no. 15, p. 155412, 2002. [23] J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, vol. 73, no. 3, p. 035407, 2006. [24] P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, p. 4370, 1972. [25] A. Hessel and A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Applied Optics, vol. 4, no. 10, pp. 1275–1297, 1965. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59058 | - |
| dc.description.abstract | 現代科技文明中,透明導電電極廣泛地應用在各式光電元件中。目
前主流透明電極為金屬氧化物材料,其中又以氧化銦錫為最大宗。但 是氧化銦錫含量稀有,以致於價格居高不下,因此相關產業不斷嘗試 使用其他低成本的材料來取代氧化銦錫作為導電電極。本篇論文嘗試 使用奈米結構金屬薄膜作為透明導電電極,將金屬的表面電漿特性列 入考量,利用耦合模態法分析奈米結構金屬薄膜的光穿透特性,並藉由簡化模型定義了奈米微結構的等效片電阻。以這些分析結果,我們提出一個設計結構範例,其光穿透率從可見光區域到紅外線區域都在90% 以上且片電阻的值可低至0.015662 Ω/sq。同時,我們也模擬了多狹縫週期和不同金屬作為材料的結果。和其他材料做比較,奈米結構金屬薄膜具有取代氧化銦錫作為透明導電電極的潛力。藉由理論分析,我們提出了奈米結構金屬薄膜作為透明導電電極的設計準則。綜合本篇論文的討論結果,我們能夠使用具有奈米結構的金屬薄膜設計一個 可用的透明電極,其具有高光穿透率以及低片電阻,若可結合現代製程及使用低價金屬則可以有效降低生產成本。 | zh_TW |
| dc.description.abstract | Transparent electrodes are widely used in optoelectronic devices. Nowadays, the commonly used materials for this purpose are metal oxides. Tin doped indium oxide (ITO) is the dominant material in this category. The problems of ITO mainly centered on its scarcity of supply, and its ceramic nature. Thus, there has been interest in replacing them. In this study, we demonstrate theoretical analysis of optical properties of nanostructure metal films with coupled-mode method and its effective sheet resistance defined by a simplified model. The surface plasmon properties of metal are considered. An example of transmission over 90% across visible range to IR range and Rs of 0.015662 Ω/sq is reported. The structures with more than one slit in a period and with different metal are also calculated in our formalism. The nanostructure metal films shows potential for replacing ITO as transparent electrodes when comparing with other materials. By the theoretical analysis, we provide design principles of nanostructure metal film-based transparent electrodes. Concluding the results of this thesis, we are able to design a qualified transparent electrode, which possess high transparency and low sheet resistance. If it is possible to combine modern process and use low priced metal the production cost can be lowered greatly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:47:22Z (GMT). No. of bitstreams: 1 ntu-102-R00941096-1.pdf: 1866115 bytes, checksum: 116a21e345c15e6d3bd2760f7060f13b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝i
中文摘要ii Abstract iii Contents iv List of Figures vi List of Tables ix 1 Introduction 1 1.1 Transparent electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Transmission through subwavelength apertures . . . . . . . . . . . . . . 4 2 Simulation tools for periodic systems 6 2.1 Coupled-mode method . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Plasmon waveguide mode . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Multi-slit periodic structure . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Single-slit periodic structure . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 Ultrathin metal film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Effective sheet resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Simulation results and discussion 22 3.1 Metal nano-slit grating . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Comparing with ultrathin metal film . . . . . . . . . . . . . . . . . . . . 42 3.3 Electrodes made of different metal . . . . . . . . . . . . . . . . . . . . . 45 3.4 More than one slit in a period . . . . . . . . . . . . . . . . . . . . . . . . 51 4 Conclusions 54 5 Future work 56 References 58 | |
| dc.language.iso | en | |
| dc.subject | 透明電極 | zh_TW |
| dc.subject | 表面電漿 | zh_TW |
| dc.subject | 穿透 | zh_TW |
| dc.subject | 耦合模態法 | zh_TW |
| dc.subject | 光柵 | zh_TW |
| dc.subject | transparent electrode | en |
| dc.subject | surface plasmon | en |
| dc.subject | transmission | en |
| dc.subject | coupled-mode method | en |
| dc.subject | grating | en |
| dc.title | 具有奈米結構的金屬薄膜作為透明電極之理論分析 | zh_TW |
| dc.title | Theoretical Analysis of Nanostructure Metal Films as Transparent
Electrodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君,林晃巖 | |
| dc.subject.keyword | 透明電極,表面電漿,穿透,耦合模態法,光柵, | zh_TW |
| dc.subject.keyword | transparent electrode,surface plasmon,transmission,coupled-mode method,grating, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
