請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59056
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪傳揚(Chwan-Yang Hong) | |
dc.contributor.author | Szu-Yun Chen | en |
dc.contributor.author | 陳思昀 | zh_TW |
dc.date.accessioned | 2021-06-16T08:47:14Z | - |
dc.date.available | 2018-08-28 | |
dc.date.copyright | 2013-08-28 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171:382–388
Bashandy T, Guilleminot J, Vernoux T, Caparros-Ruiz D, Ljung K, Meyer Y, Reichheld JP (2010) Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell 22: 376-391 Bashandy T, Meyer Y, Reichheld JP (2011) Redox regulation of auxin signaling and plant development in Arabidopsis. Plant Signal Behav 6: 117-119 Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65: 277-284 Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, Beckmann R (2012) Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482: 501-508 Benitez-Alfonso Y, Cilia M, Roman AS, Thomas C, Maule A, Hearn S, Jackson D (2009) Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci USA 106: 3615-3620 Broin M, Cuine S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467: 245-248 Buchanan BB, Holmgren A, Jacquot JP, Scheibe R (2012) Fifty years in the thioredoxin field and a bountiful harvest. BBA-Gen Subjects 1820: 1822-1829 Campbell SKaAM (1994) Which bacterium is the ancestor of the animal mitochondrial genome? Proc Natl Acad Sci USA 91: 12842-12846 Cejudo FJ, Ferrandez J, Cano B, Puerto-Galan L, Guinea M (2012) The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signalling. FEBS Lett 586: 2974-2980 Chae HB, Moon JC, Shin MR, Chi YH, Jung YJ, Lee SY, Nawkar GM, Jung HS, Hyun JK, Kim WY, Kang CH, Yun DJ, Lee KO, Lee SY (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol Plant 6: 323-336 Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140: 1297-1305 Chen YR, Hartmann FC (1995) A signature of the oxygenase intermediate in catalysis by ribulose-bisphosphate carboxylase oxygenase as provided by a site-directed mutant. J Biol Chem 270: 11741-11744 Chen Z, Pan YH, An LY, Yang WJ, Xu LG, Zhu C (2013) Heterologous expression of a halophilic archaeon manganese superoxide dismutase enhances salt tolerance in transgenic rice. Russ J of Plant Physl 60: 359-366 Chen Z, Pan YH, Wang SS, Ding YF, Yang WJ, Zhu C (2012) Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci 197: 10-20 Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168: 113-120 Chugh LK, Sawhney SK (1996) Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ Pollut 92: 1-5 Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707-1719 Colleen E, Reichard P, Thelander L (1964) Enzymatic synthesis of deoxyribonucleotides - purification and properties of thioredoxin reductase from Escherichia Coli B. J Biol Chem 239: 3445-3542 Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278: 23747-23752 Collinson EJ, Wheeler GL, Garrido EO, Avery AM, Avery SV, Grant CM (2002) The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem 277: 16712-16717 Cui-Jun Zhang B-CZ, Wei-Na Ge, Ya-Fang Zhang, Yun Song, Da-Ye Sun, and Yi Guo (2011) An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. Plant Physiol 157: 1884-1899 Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98: 29-36 Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57: 779-795 di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41: 105-130 Dos Santos CV, Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci 11: 329-334 Fabianek RA, Hennecke H, Thony-Meyer L (2000) Periplasmic protein thiol: disulfide oxidoreductases of Escherichia coli. FEMS Microbiol Rev 24: 303-316 Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266: 496-507 Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555: 443-448 Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62: 24-35 Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39: 533-541 Grimaldi P, Ruocco MR, Lanzotti MA, Ruggiero A, Ruggiero I, Arcari P, Vitagliano L, Masullo M (2008) Characterisation of the components of the thioredoxin system in the archaeon Sulfolobus solfataricus. Extremophiles 12: 553-562 Guo JB, Dai XJ, Xu WZ, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72: 1020-1026 Guo YS, Huang CJ, Xie Y, Song FM, Zhou XP (2010) A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta 232: 1499-1509 Herbette S, Lenne C, Leblanc N, Julien JL, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269: 2414-2420 Holmgren A (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc Natl Acad Sci USA 73: 2275-2279 Jana S, Choudhuri MA (1981) Glycolate metabolism of 3 submersed aquatic angiosperms: effect of heavy metals. Aquat Bot 11: 67-77 John Kuriyan TSRK, Lim Wong, Brian Guenther, Arno Pahler, Charles H. Williams Jr, Peter Model (1991) Convergent evolution of similar function in two structurally divergent enzymes. Nature 352: 172 - 174 Johnson TC, Wada K, Buchanan BB, Holmgren A (1987) Reduction of purothionin by the wheat seed thioredoxin system. Plant Physiol 85: 446-451 Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72: 111-135 Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY, et al. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 Keryer E, Collin V, Lavergne D, Lemaire S, Issakidis-Bourguet E (2004) Characterization of Arabidopsis mutants for the variable subunit of ferredoxin : thioredoxin reductase. Photosynth Res 79: 265-274 Kim K, Portis AR (2004) Oxygen-dependent H2O2 production by Rubisco. FEBS Lett 571: 124-128 Kim YB, Garbisu C, Pickering IJ, Prince RC, George GN, Cho MJ, Wong JH, Buchanan BB (2003) Thioredoxin h overexpressed in barley seeds enhances selenite resistance and uptake during germination and early seedling development. Planta 218: 186-191 Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, et al. (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256 Ladenstein R, Ren B (2006) Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles. FEBS J 273: 4170-4185 Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98: 14144-14149 Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27: 969-978 Lascano HR, Gomez LD, Casano LM, Trippi VS (1998) Changes in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress. Plant Physiol Biochem 36: 321-329 Lascano R, Munoz N, Robert G, Rodriguez M, Melchiorre M, Trippi V, Quero G (2012) Paraquat: an oxidative stress inducer. In DMN Hasaneen, ed, Herbicides : properties, synthesis and control of weeds. InTech, p 492 Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides-Isolation and characterization of thioredoxin hydrogen donor from Escherichia coli B. J Biol Chem 239: 3436-3444 Lemaire S, Keryer E, Stein M, Schepens I, Issakidis-Bourguet E, Gerard-Hirne C, Miginiac-Maslow M, Jacquot JP (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120: 773-778 Lemaire SD, Collin V, Keryer E, Quesada A, Miginiac-Maslow M (2003) Characterization of thioredoxin y, a new type of thioredoxin identified in the genome of Chlamydomonas reinhardtii. FEBS Lett 543: 87-92 Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physio Plantarum 139: 421-434 Lillig CH, Berndt C (2013) Glutaredoxins in thiol/disulfide exchange. Antioxid Redox Sign 18: 1654-1665 Lillig CH, Berndt C, Holmgren A (2008) Glutaredoxin systems. BBA Gen Subjects 1780: 1304-1317 Maaty WS, Wiedenheft B, Tarlykov P, Schaff N, Heinemann J, Robison-Cox J, Valenzuela J, Dougherty A, Blum P, Lawrence CM, Douglas T, Young MJ, Bothner B (2009) Something old, something new, something borrowed: how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PLoS One 4(9): e6964 Machida T, Ishibashi A, Kirino A, Sato J, Kawasaki S, Niimura Y, Honjoh K, Miyamoto T (2012) Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. PLoS One 7(9): e45988 Mallick P, Boutz DR, Eisenberg D, Yeates TO (2002) Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. P Natl Acad f Sci USA 99: 9679-9684 Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4: 2696-2706 Marti MC, Florez-Sarasa I, Camejo D, Ribas-Carbo M, Lazaro JJ, Sevilla F, Jimenez A (2011) Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. J Exp Bot 62: 3863-3874 Martin JL (1995) Thioredoxin - a fold for all reasons. Structure 3: 245-250 Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. P Natl Acad USA 106: 9109-9114 Masullo M, Raimo G, DelloRusso A, Bocchini V, Bannister JV (1996) Purification and characterization of NADH oxidase from the archaea Sulfolobus acidocaldarius and Sulfolobus solfataricus. Biotechnol Appl Bioc 23: 47-54 Melnichuk YP, Lishko AK, Kalinin FL (1982) Cadmium effect on free amino-acid content in germs of pea-seeds at early germination stages. Fiziol Biokhim Kult 14: 383-386 Mestres-Ortega D, Meyer Y (1999) The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 240: 307-316 Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Sign 17: 1124-1160 Meyer Y, Reichheld JP, Vignols F (2005) Thioredoxins in Arabidopsis and other plants. Photosynth Res 86: 419-433 Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Protein sensors and reactive oxygen species, Pt A, selenoproteins and thioredoxin 347: 394-402 Stroher E, Millar AH (2012) The biological roles of glutaredoxins. J Biochem 446: 333-348 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410 Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22: 368-374 Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB (2009) Thioredoxin targets in plants: the first 30 years. J Proteomics 72: 452-474 Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38: 940-953 Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8: 199-216 Nieboer E, Richardson DHS (1980) The replacement of the non-descript term heavy-metals by a biologically and chemically significant classification of metal ions. Environ Pollut B 1: 3-26 Pagano EA, Chueca A, Lopez-Gorge J (2000) Expression of thioredoxins f and m, and of their targets fructose-1,6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions. J Exp Bot 51: 1299-1307 Pal M, Horvath E, Janda T, Paldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil SC 169: 239-246 Park SK, Jung YJ, Lee JR, Lee YM, Jang HH, Lee SS, Park JH, Kim SY, Moon JC, Lee SY, Chae HB, Shin MR, Jung JH, Kim MG, Kim WY, Yun DJ, Lee KO, Lee SY (2009) Heat-shock and redox-dependent functional switching of an h-Type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol 150: 552-561 Pascual MB, Mata-Cabana A, Florencio FJ, Lindahl M, Cejudo FJ (2011) A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria. Plant Physiol 155: 1806-1816 Perez-Ruiz JM, Cejudo FJ (2009) A proposed reaction mechanism for rice NADPH thioredoxin reductase C, an enzyme with protein disulfide reductase activity. FEBS Lett 583: 1399-1402 Prasad PVV, Boote KJ, Allen LH (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. AGR Forest Meteorol 139: 237-251 Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272: 15661-15667 Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y (2007) Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell 19: 1851-1865 Reichheld JP, Mestres-Ortega D, Laloi C, Meyer Y (2002) The multigenic family of thioredoxin h in Arabidopsis thaliana: specific expression and stress response. Plant Physiol Biochem 40: 685-690 Reichheld JP, Meyer E, Khafif M, Bonnard G, Meyer Y (2005) AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett 579: 337-342 Rey P, Cuine S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M (2005) Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Plant J 41: 31-42 Robert P. Hirt SM, T. Martin Embley and Graham H. Coombs (2002) The diversity and evolution of thioredoxin reductase: new perspectives. Trends Parasitol 18: 302-308 Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxins: still mysterious reducing systems. Cell Mol Life Sci 61: 1266-1277 Ruggiero A, Masullo M, Ruocco MR, Grimaldi P, Lanzotti MA, Arcari P, Zagari A, Vitagliano L (2009) Structure and stability of a thioredoxin reductase from Sulfolobus solfataricus: A thermostable protein with two functions. BBA -Proteins Proteom 1794: 554-562 Ruocco MR, Ruggiero A, Masullo L, Arcari P, Masullo M (2004) A 35 kDa NAD(P)H oxidase previously isolated from the archaeon Sulfolobus solfataricus is instead a thioredoxin reductase. Biochimie 86: 883-892 Sahrawy M, Hecht V, LopezJaramillo J, Chueca A, Chartier Y, Meyer Y (1996) Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. J Mol Evol 42: 422-431 Santiago DLL (2011) Exploring the role of the thioredoxin system, peroxiredoxins and glutaredoxins in aluminum and cadmium tolerance in yeast and Arabidopsis thaliana. University of Alberta, Department of Biological Sciences, cDiana Laura Lopez Santiago Sanz-Barrio R, Fernandez-San Millan A, Carballeda J, Corral-Martinez P, Segui-Simarro JM, Farran I (2012) Chaperone-like properties of tobacco plastid thioredoxins f and m. J Exp Bot 63: 365-379 Scandalios JG (1997) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, Plainview, N.Y. Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Sign 10: 1235-1273 Serrato AJ, Perez-Ruiz JM, Spinola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279: 43821-43827 She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98: 7835-7840 Smiri M, Jelali N, El Ghoul J (2013) Cadmium affects the NADP-thioredoxin reductase/thioredoxin system in germinating pea seeds. J Plant Interact 8: 125-133 Sood A, Pabbi S, Uniyal PL (2011) Effects of paraquat on lipid peroxidation and antioxidant enzymes in aquatic fern Azolla microphylla. Russ J Plant Physiol 58: 667-673 Spassov VZ, Karshikoff AD, Ladenstein R (1994) Optimization of the electrostatic interactions in proteins of different functional and folding type. Protein Sci 3: 1556-1569 Spoel SH, Loake GJ (2011) Redox-based protein modifications: the missing link in plant immune signalling. Curr Opin Plant Biol 14: 358-364 Sun LJ, Ren HY, Liu RX, Li BY, Wu TQ, Sun F, Liu HM, Wang XM, Dong HS (2010) An h-type thioredoxin functions in tobacco defense responses to two species of viruses and an abiotic oxidative stress. Mol Plant Microbe Interact 23: 1470-1485 Sun QA, Su D, Novoselov SV, Carlson BA, Hatfield DL, Gladyshev VN (2005) Reaction mechanism and regulation of mammalian thioredoxin/glutathione reductase. Biochemistry-US 44: 14528-14537 Tamarit J, Belli G, Cabiscol E, Herrero E, Ros J (2003) Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J Bio Chem 278: 25745-25751 Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F (2007) The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 581: 3598-3607 Trotter EW, Grant CM (2003) Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. EMBO Rep 4: 184-188 Wahid A (2007) Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J Plant Res 120: 219-228 Waksman G, Krishna TSR, Williams CH, Kuriyan J (1994) Crystal-structure of Escherichia coli thioredoxin reductase refined at 2-angstrom resolution - implications for a large conformational change during catalysis. J Mol Biol 236: 800-816 Wang Y, Zong K, Jiang L, Sun JJ, Ren YB, Sun ZH, Wen C, Chen XP, Cao SQ (2011) Characterization of an Arabidopsis cadmium-resistant mutant cdr3-1D reveals a link between heavy metal resistance as well as seed development and flowering. Planta 233: 697-706 Winterma.Jf, Demots A (1965) Spectrophotometric characteristics of chlorophylls A and B and their pheophytins in ethanol. Biochim Biophy Acta 109: 448-& Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44: 71-80 Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45: 18-27 Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195: 10-23 Yves Meyer CB, Valerie Delorme-Hinoux, Jean-Philippe Reichheld and Christophe Riondet (2011) Thioredoxin and glutaredoxin systems in plants molecular mechanisms, cross talks and functional significance. In, Laboratoire Genome et Developpement des Plantes, Universite de Perpignan, UMR CNRS-UPVD 5096, 58 avenue Paul Alduy, 66860 Perpignan, France. Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93: 259-266 Zheng ZW, Hayashimoto A, Li ZJ, Murai N (1991) Hygromycin resistance gene cassettes for vector construction and selection of transformed rice protoplasts. Plant Physiol 97: 832-835 Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-'caldariella' group: taxonomy on the basis of the structure of DNA-dependent RNA-polymerases. Arch Microbiol 125: 259-269 Źrobek-Sokolnik A (2012) Temperature stress and responses of plants. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, pp 113-134 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59056 | - |
dc.description.abstract | 硫氧化還原蛋白(Thioredoxin, 簡稱Trx)是一類利用硫基(Thiol group)氧化還原反應(2SH←→S-S)調節細胞氧化還原狀態的蛋白,與其專一性的Trx還原酶(The NADPH-dependent thioredoxin reductase, 簡稱NTR)構成NTR/Trx系統,在植物氧化逆境抗性反應中扮演重要的角色。Sulfolobus solfataricus是一種生長在極端環境的古生菌,為了解此系統對植物逆境抗性之影響,本研究將S. solfataricus 兩個Trx基因SsTrxA1、SsTrxA2,以及一個NTR基因SsTrxB3,分別利用35S啟動子驅動構築成可在植物大量表現的質粒,包括OE-SsTrxA1、OE-SsTrxA2、OE-SsTrxB3 、OE- SsTrxA1+ SsTrxB3、OE- SsTrxA2+SsTrxB3等5個質粒,並利用農桿菌轉殖大量表現在阿拉伯芥,以分析轉殖植物對逆境之抗性。RT-PCR分析結果顯示,五種質粒均可成功的大量表現在阿拉伯芥植株中,各基因構築均可獲得6個以上轉殖系。轉殖株經過鎘、巴拉刈處理後,顯示SsTrxB3 與 SsTrxA2+SsTrxB3轉殖株有較佳的逆境抗性,在逆境下與未轉殖植株比較,有較長的根長與較大的鮮重。此外,熱逆境分析結果顯示OE- SsTrxA2B3具有較佳的先天耐熱性。這些結果顯示來自S. solfataricus的NTR/Trx系統能提高植物的逆境抗性,未來應具有潛力應用於增加作物耐多重逆境抗性。 | zh_TW |
dc.description.abstract | NADPH-dependent thioredoxin reductase/Thioredoxin (NTR/Trx) system catalyzes disulfide-bond reduction to regulate the redox status of cells, ubiquitously exists in all organisms and involves in oxidative stress response. The NTR/Trx system of a hyperthermophilic archaeon, Sulfolobus solfataricus, has been found to play a major role in its extremely thermal tolerance. To study the impact of S. solfataricus NTR/Trx system on plant abiotic stress tolerance, S. solfataricus NTR/Trx system genes (two Trx genes:SsTrxA1, SsTrxA2 and one NTR gene :SsTrxB3) were solely or simultaneously overexpressed in Arabidopsis thaliana to evaluate their roles in abiotic stress tolerance. Five plasmids including SsTrxA1, SsTrxA2, SsTrxB3, SsTrxA1+ SsTrxB3 and SsTrxA2+SsTrxB3 under the control of a CaMV 35S promoter were constructed and transformed to Arabidopsis by Agrobacterium tumefaciens. At least 6 transgenic lines were obtained for each construct and most of them showed highly accumulation of NTR or Trx mRNA. Functional analysis indicated that OE-SsTrxB3 and OE-SsTrxA2B3 plants exhibited enhanced tolerance of transgenic plants to Cd and paraquat.Moreover, SsTrxA2+SsTrxB3 plants also showed increased thermal tolerance. Taken together, the S. solfataricus NTR/Trx system is able to enhance stress tolerance in Arabidopsis. This system may be applied for the development of new strategies to enhance crop tolerance to multiple stresses. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:47:14Z (GMT). No. of bitstreams: 1 ntu-102-R00623004-1.pdf: 2339461 bytes, checksum: f7958edfdfe042ad1ec3e456ab71c13c (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 第一章、 緒論 1
1.1 植物與氧化逆境 1 1.1.1 氧化逆境之來源與影響 1 1.1.2 鎘(Cadmium, Cd)對植物之氧化毒性 2 1.1.3 巴拉刈(paraquat, PQ)對植物之氧化毒性 3 1.1.4 高溫對植物之氧化毒性 3 1.1.5 植物的抗氧化系統:酵素型、非酵素 4 1.1.6 植物的細胞氧化還原狀態調節系統:NADP+硫氧化還原蛋白還原酶/硫氧化還原蛋白系統(NTR/Trx系統)、榖胱甘肽/穀氧化還原蛋白(GSH/Grx系統) 4 1.2 阿拉伯芥的NTR/Trx系統 8 1.2.1 阿拉伯芥介紹 8 1.2.2 Trx 9 1.2.3 NTR 10 1.2.4 植物NTR/Trx系統對細胞氧化還原狀態調控的影響 11 1.3 Sulfolobus solfataricus NTR/Trx系統 11 1.3.1 Sulfolobus solfataricus介紹 11 1.3.2 Trx 12 1.3.3 NTR 12 第二章、 研究目的 14 第三章、 材料與方法 15 3.1 試驗材料 15 3.2 胺基酸序列比對及親緣演化樹分析 15 3.3 質粒的構築 15 3.4 載體或DNA片段的製備 17 3.5 大腸桿菌(E.coli)質粒DNA的純化 19 3.6 阿拉伯芥之轉殖 20 3.7 轉殖基因表現分析 22 3.8 生理分析 26 第四章、 結果 28 4.1 硫葉菌(S. solfataricus)TrxA1、TrxA2與TrxB3之結構及親緣演化樹分析 28 4.1.1 SsTrxA1、SsTrxA2與阿拉伯芥典型Trx胺基酸序列比對及親緣演化樹分析 28 4.1.2 SsTrxB3與其他物種的NTR胺基酸序列比對及親緣演化樹分析 29 4.2 大量表現SsTrxA1、SsTrxA2、SsTrxB3的A. thaliana轉殖株之篩選及分子鑑定 29 4.2.1 SsTrxA1、SsTrxA2、SsTrxB3基因於A. thaliana轉殖株之表現質粒之構築 29 4.2.2 SsTrxA1、SsTrxA2、SsTrxB3基因於A. thaliana轉殖株之分子表現鑑定 30 4.3 轉殖株幼苗之鎘逆境抗性檢測 30 4.3.1 植株外表觀察 30 4.3.2 根長、鮮重分析 30 4.3.3 葉綠素含量分析 31 4.3.4 H2O2含量分析 31 4.4 轉殖株幼苗巴拉刈(PQ)逆境抗性檢測 31 4.4.1 植株外表觀察 31 4.5 轉殖株幼苗熱逆境抗性檢測 31 4.5.1 轉殖株耐熱性性狀分析 32 4.5.2 轉殖株耐熱性存活率分析 32 第五章、 討論 33 第六章、 參考文獻 38 附錄 65 | |
dc.language.iso | zh-TW | |
dc.title | 在阿拉伯芥大量提升耐熱古生菌Sulfolobus solfataricus 硫氧化還原系統對非生物性逆境抗性之研究 | zh_TW |
dc.title | Studies on the increase of abiotic stress tolerance in Arabidopsis thaliana by enhancing thioredoxin system from a hyperthermophilic archaeon Sulfolobus solfataricus | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張孟基(Men-Chi Chang),葉信宏(Hsin-Hung Yeh),陳仁治(Jen-Chih Chen),徐駿森(Chun-Hua Hsu) | |
dc.subject.keyword | 硫葉菌,阿拉伯芥,鎘,氧化逆境,硫氧化還原蛋白, | zh_TW |
dc.subject.keyword | S. solfataricus,A. thaliana,Cd,oxidative stress,thioredoxin,thioredoxin reductase, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。