Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59047
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡偉博(Wei-Bor Tsai)
dc.contributor.authorHan-Sheng Chenen
dc.contributor.author陳翰生zh_TW
dc.date.accessioned2021-06-16T08:46:41Z-
dc.date.available2018-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citation[1] Langer R, Vacanti JP. TISSUE ENGINEERING. Science. 1993;260:920-6.
[2] O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88-95.
[3] Sheridan MH, Shea LD, Peters MC, Mooney DJ. Bioadsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release. 2000;64:91-102.
[4] Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001;7:23-33.
[5] Porter JR, Ruckh TT, Popat KC. Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies. Biotechnol Prog. 2009;25:1539-60.
[6] Stevens B, Yang YZ, MohandaS A, Stucker B, Nguyen KT. A review of materials, fabrication to enhance bone regeneration in methods, and strategies used engineered bone tissues. J Biomed Mater Res Part B. 2008;85B:573-82.
[7] Mistry AS, Mikos AG. Tissue engineering strategies for bone regeneration. In: Yannas IV, editor. Regenerative Medicine Ii: Clinical and Preclinical Applications. New York: Springer; 2005. p. 1-22.
[8] Yannas IV. Regenerative Medicine II: Clinical and Preclinical Applications. In: Yannas IV, editor. Regenerative Medicine Ii: Clinical and Preclinical Applications. New York: Springer; 2005. p. 1-232.
[9] Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004;88:379-91.
[10] Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004;32:148-59.
[11] Bruder SP, Fox BS. Tissue engineering of bone - Cell based strategies. Clin Orthop Rel Res. 1999:S68-S83.
[12] Ducheyne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials. 1999;20:2287-303.
[13] Smith IO, Baumann MJ, McCabe LR. Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res Part A. 2004;70A:436-41.
[14] Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG. OSTEOBLAST FUNCTION ON SYNTHETIC BIODEGRADABLE POLYMERS. Journal of Biomedical Materials Research. 1994;28:1445-53.
[15] Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705-11.
[16] Carotenuto G, Spagnuolo G, Ambrosio L, Nicolais L. Macroporous hydroxyapatite as alloplastic material for dental applications. J Mater Sci-Mater Med. 1999;10:671-6.
[17] Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, et al. Osteoconduction at porous hydroxyapatite with various pore configurations. Biomaterials. 2000;21:1291-8.
[18] Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749-57.
[19] Hogan BLM. Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes Dev. 1996;10:1580-94.
[20] Urist MR. Bone morphogenetic protein: The molecularization of skeletal system development. Journal of Bone and Mineral Research. 1997;12:343-6.
[21] Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: The potential for engineering bone. Eur Cells Mater. 2008;15:100-14.
[22] Ruoslahti E, Pierschbacher MD. NEW PERSPECTIVES IN CELL-ADHESION - RGD AND INTEGRINS. Science. 1987;238:491-7.
[23] Rezania A, Thomas CH, Branger AB, Waters CM, Healy KE. The detachment strength and morphology of bone cells contacting materials modified with a peptide sequence found within bone sialoprotein. Journal of Biomedical Materials Research. 1997;37:9-19.
[24] Costantino PD, Friedman CD. SYNTHETIC BONE-GRAFT SUBSTITUTES. Otolaryngologic Clinics of North America. 1994;27:1037-74.
[25] Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. European Spine Journal. 2001;10:S96-S101.
[26] Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite. Journal of Biomedical Materials Research. 1996;32:481-92.
[27] Chen GQ, Deng CX, Li YP. TGF-beta and BMP Signaling in Osteoblast Differentiation and Bone Formation. International Journal of Biological Sciences. 2012;8:272-88.
[28] Cheng HW, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). Journal of Bone and Joint Surgery-American Volume. 2003;85A:1544-52.
[29] von Bubnoff A, Cho KWY. Intracellular BMP signaling regulation in vertebrates: Pathway or network? Developmental Biology. 2001;239:1-14.
[30] Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocrine Reviews. 2000;21:393-411.
[31] Noshi T, Yoshikawa T, Dohi Y, Ikeuchi M, Horiuchi K, Ichijima K, et al. Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artificial Organs. 2001;25:201-8.
[32] Reddi AH. Morphogenetic messages are in the extracellular matrix: biotechnology from bench to bedside. Biochemical Society Transactions. 2000;28:345-9.
[33] Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials. 2001;22:1643-51.
[34] Duan W, Ning CQ, Tang TT. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite. Journal of Biomedical Materials Research Part A. 2013;101A:1955-61.
[35] Yuan HP, Van den Doel M, Li SH, Van Blitterswijk CA, De Groot K, De Bruijn JD. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. Journal of Materials Science-Materials in Medicine. 2002;13:1271-5.
[36] Li RH, Wozney JM. Delivering on the promise of bone morphogenetic proteins. Trends in Biotechnology. 2001;19:255-65.
[37] Yuan HP, Yang ZJ, Li YB, Zhang XD, De Bruijn JD, De Groot K. Osteoinduction by calcium phosphate biomaterials. Journal of Materials Science-Materials in Medicine. 1998;9:723-6.
[38] Yuan HP, De Bruijn JD, Li YB, Feng JQ, Yang ZJ, De Groot K, et al. Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous alpha-TCP and beta-TCP. Journal of Materials Science-Materials in Medicine. 2001;12:7-13.
[39] Yuan HP, De Bruijn JD, Zhang XD, Van Blitterswijk CA, De Groot K. Use of an osteoinductive biomaterial as a bone morphogenetic protein carrier. Journal of Materials Science-Materials in Medicine. 2001;12:761-6.
[40] Yuan HP, Kurashina K, de Bruijn JD, Li YB, de Groot K, Zhang XD. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799-806.
[41] Barinov SM. Calcium phosphate-based ceramic and composite materials for medicine. Russian Chemical Reviews. 2010;79:13-29.
[42] El Briak-BenAbdeslam H, Mochales C, Ginebra MP, Nurit J, Planell JA, Boudeville P. Dry mechanochemical synthesis of hydroxyapatites from dicalcium phosphate dihydrate and calcium oxide: A kinetic study. Journal of Biomedical Materials Research Part A. 2003;67A:927-37.
[43] Tsai WB, Shi Q, Grunkemeier JM, McFarland C, Horbett TA. Platelet adhesion to radiofrequency glow-discharge-deposited fluorocarbon polymers preadsorbed with selectively depleted plasmas show the primary role of fibrinogen. Journal of Biomaterials Science-Polymer Edition. 2004;15:817-40.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59047-
dc.description.abstract骨填補物可以刺激骨組織再生於骨缺陷中,恢復骨組織結構與功能。由於氫氧基磷灰石的組成與性質接近骨組織的無機鹽成分,因此成為人造的骨移植材料的主流。經過臨床實驗證實磷酸鈣生醫陶瓷甚為安全,生物相容性良好,並且有引導骨成長的特性,不過一般認為氫氧基磷灰石缺乏骨誘導作用。然而從若干動物實驗顯示,在植入磷酸鹽陶瓷的骨缺陷處,在復原時有骨誘導作用發生的跡象,不過鮮少有研究對此現象進行研究。我們推測其可能原因為磷酸鹽陶瓷可以吸附骨髓腔中的Bone morphogenetic proteins (BMPs),或是磷酸鹽陶瓷可以促進間葉幹細胞分泌BMPs,以刺激周圍的間葉幹細胞分化為骨母細胞。
磷酸鈣陶瓷的組成或結構會影響其骨誘導的效果,首先我們想探討磷酸鈣陶瓷在骨髓腔的環境中是否具有骨誘導作用。我們藉由不同組成的磷酸鈣陶瓷來觀察細胞在磷酸鈣陶瓷上的生長及分化狀況。並檢測不同組成的磷酸鈣陶瓷的表面結構及物化性質,推論出陶瓷的結構及組成對於細胞生長和分化的影響,進而找出最適合用於骨移植材料的磷酸鈣陶瓷組成。此外我們也觀察陶瓷加入BMP-2是否能促進細胞進行分化。陶瓷吸附BMP-2的能力愈好則愈容易促進細胞分化。
此研究我們使用五組不同組成的磷酸鈣陶瓷進行實驗,分析了各種材料性質對細胞生長及分化的影響。我們證實了加入磷酸鹽確實使氫氧基磷灰石具有骨誘導,也發現磷酸鹽比例愈高其骨誘導效果愈好。藉由各種實驗結果我們找出最適合骨新生的配方。未來可以此配方生產新型的骨填補材。
zh_TW
dc.description.abstractBone grafts are aimed to stimulate osteogenesis in bone defects, and restore the structure and function of bone tissue. Since the atomic composition and mechanical properties of hydroxyapatite (HA) resemble the inorganic portion of bone tissue, HA becomes a popular material for synthetic bone grafts. Clinical evidence reveals that HA bioceramics process excellent biocompatibility and the property of osteoconduction. Although it is generally thought that HA lacks the osteoinduction property, some animal implant experiments reveal that osteoinduction may happen in the surroundings of HA in the bone defects. Nevertheless, such phenomenon is usually ignored in the studies of bone grafts. We suggest that it might be due to the adsorption of BMPs to HA from bone marrow or the stimulation in the secretion of BMPs from mesenchymal stem cells when they are cultured on HA.
The composition or structure of calcium phosphate ceramic will affect its osteoinductive effect. First of all we would like to explore whether calcium phosphate ceramics have osteoinduction in the bone marrow cavity environment. We used different composed of calcium phosphate ceramics to observe the 3A6 mesenchymal stem cells growth and differentiation status. And we detect the surface structure and physical properties of calcium phosphate ceramics to infer the effect of ceramic structure and composition on cell growth and differentiation, and thus we identify the most suitable composed of calcium phosphate ceramics for the bone graft material. In addition, we also observed whether the ceramic added BMP-2 can promote cell differentiation. Ceramic which adsorbed BMP-2 well is more easy to promote cell differentiation.
In this study, we used five different composition of calcium phosphate ceramics to conduct experiments, and we analyzed the effect of various material properties on cell growth and differentiation. We verified that the addition of phosphate does make hydroxyapatite osteoinductive, and has also found that the higher the percentage of phosphate, the effect of osteoinduction is better. With a variety of experimental results, we identify the most suitable composition for bone filling. This formula can be used to product new bone filling material in future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:46:41Z (GMT). No. of bitstreams: 1
ntu-102-R00524071-1.pdf: 6988685 bytes, checksum: 77bbbee46e52daf61b000e4546565e45 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 II
Abstract III
Content V
List of Figures X
List of Tables XII
Chapter 1 1
Introduction 1
1.1 Tissue Engineering 1
1.1.1 Overview of tissue engineering 1
1.1.2 Bone tissue engineering 2
1.1.3 Scaffolds for bone tissue engineering 3
1.1.4 Biofactors for bone tissue engineering 4
1.2 Bone grafting 6
1.3 Bioceramics 10
1.3.1 Overview of Bioceramics 10
1.3.2 Calcium phosphate-base bioceramics 12
1.3.3 The application of calcium phosphate-base bioceramics 14
1.3.4 Calcium phosphate cement 15
1.4 Domestic industry analysis 17
1.4.1 Calcium phosphate cement 17
1.4.2 Novel resorbable bioceramics 19
1.5 The biological activity of bone filling 21
1.5.1 Osteoinduction 21
1.5.2 Osteoconduction 22
1.5.3 Osteogenesis 23
1.5.4 The biological activity of hydroxyapatite 23
1.6 Bone morphogenetic proteins (BMPs) 24
1.7 Osteoinductive calcium phosphate ceramics 27
1.7.1 Osteoinductive calcium phosphate ceramics 27
1.7.2 Mechanism hypothesis of osteoinductive calcium phosphate ceramics 29
1.7.3 Manufacture of calcium phosphate ceramics 30
1.8 Research purposes 32
Chapter 2 34
Materials and Methods 34
2.1 Materials 34
2.1.1 Human mesenchymal stem cell line (3A6) cell culture and osteogenic differentiation 34
2.1.2 Mineralization culture 35
2.1.3 MTT assay 35
2.1.4 Cell number determination (Lactate dehydrogenase, LDH assay) 35
2.1.5 Alkaline phosphatase (ALP) activity 36
2.1-6 Reverse transcription-polymerase chain reaction (RT-PCR) 36
2.1-7 calcium phosphate ceramics 37
2.2 Experimental instrument and consumable materials 37
2.2-1 Experimental instrument 37
2.2-2 Experimental consumable materials 38
2.3 Solution formula 39
2.3-1 Phophate buffered saline solution (PBS), pH 7.4 39
2.3-2 LDH assay working solution 39
2.3-3 Tris-base buffer pH 8.5 39
2.3.4 Triton X-100 solution 39
2.3-5 DMEM low glucose medium for 3A6 cell culture 40
2.4 Methods 40
2.4.1 Production of calcium phosphate aggregate 40
2.4.2 The detection of calcium phosphate ceramics sample 41
2.4.2-1 plate count test 41
2.4.2-2 pyrogens (endotoxins) test 41
2.4.2-3 pH testing 42
2.4.2-4 Compressive strength test 42
2.4.3 The rate of degradation 43
2.4.4 MTT assay 44
2.4.5 Lactate dehydrogenase (LDH) assay 44
2.4.6 Reverse transcription-polymerase chain reaction (RT-PCR) 45
2.4.6-1 Extraction of RNA 46
2.4.6-2 cDNA synthesis by reverse-transcript (RT) 46
2.4.6-3 Polymerase chain reaction (PCR) 48
2.4.6-4 Electrophoresis 49
Chapter 3 51
Detection of chemical and physical properties of calcium phosphate ceramics 51
3.1 Identification of calcium phosphate ceramics 51
3.1.1 plate count test 51
3.1.2 Pyrogen (endotoxin) test 51
3.1.3 pH testing 52
3.1.4 Compressive strength test 52
3.1.5 Heavy metal test 52
3.2 The surface morphology of calcium phosphate ceramics 53
3.3 Porosity of ceramic samples 53
3.4 Degradation rate of ceramic samples 54
Chapter 4 62
The growth and differentiation of mesenchymal stem cells on different components of calcium phosphate ceramics 62
4.1 Mesenchymal stem cell attachment and growth on different composed calcium phosphate ceramics 62
4.2 Differentiation of mesenchymal stem cells on different composed of calcium phosphate ceramics 66
4.3 ALP activity determination of different composed of calcium phosphate ceramics 70
4.4 Discussion 71
Chapter 5 89
Conclusion 89
Reference 90
Appendix 94
dc.language.isoen
dc.subject骨誘導zh_TW
dc.subject磷酸鈣陶瓷zh_TW
dc.subject氫氧基磷灰石zh_TW
dc.subjecthydroxyapatiteen
dc.subjectcalcium phosphate ceramicsen
dc.subjectosteoinductionen
dc.title磷酸鹽陶瓷組成對於骨誘導作用之研究zh_TW
dc.titleThe effects of compositions of Phosphate Bioceramics on osteoinductionen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee游佳欣(Jia-Shing Yu),王孟菊(Meng-Jiy Wang)
dc.subject.keyword氫氧基磷灰石,磷酸鈣陶瓷,骨誘導,zh_TW
dc.subject.keywordhydroxyapatite,calcium phosphate ceramics,osteoinduction,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved