Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59041
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾賢忠
dc.contributor.authorTze-Ting Suen
dc.contributor.author蘇子婷zh_TW
dc.date.accessioned2021-06-16T08:46:17Z-
dc.date.available2023-08-19
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citationAbida, W., Nikolaev, A., Zhao, W., Zhang, W., and Gu, W. (2007). FBXO11 promotes the neddylation of p53 and inhibits its transcriptional activity. J. Biol. Chem. 282, 1797-1804.
An, L., Zhao, X., Wu, J., Jia, J., Zou, Y., Guo, X., He, L., and Zhu, H. (2012). Involvement of autophagy in cardiac remodeling in transgenic mice with cardiac specific over-expression of human programmed cell death 5. PLoS ONE. 7, e30097.
Anastas, J., and Moon, R. (2013). WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer. 13, 11-26.
Ashkenazi, A. (2008). Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 19, 325-331.
Bailly, C. (2012). Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev. 112, 3611-3640.
Bourdon, J. (2007). P53 and its isoforms in cancer. British Journal of Cancer. 97, 277-282.
Bouwman, P., and Jonkers, J. (2012). The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer. 12, 587-598.
Carter, S., and Vousden, K. (2009). Modifications of p53: competing for the lysines. Curr. Opin. Genet. Dev. 19, 18-24.
Chalasani, S., Prakash, K.V., Pulla, R.P., Tekula, R., Manasa, E., and Umasankar, B. (2013). Development and validation of doxorubicin HCl in bulk and its pharmaceutical dosage form by visible spectrophotometry. International Journal of Pharma Sciences 3, 216-218.
Chen, C., Zhou, H., Xu, L., Xu, D., Wang, Y., Zhang, Y., Liu, X., Liu, Z., Ma, D., Ma, Q., and Chen, Y. (2010). Recombinant human PDCD5 sensitizes chondrosarcomas to cisplatin chemotherapy in vitro and in vivo. Apoptosis. 15, 805-813.
Chen, Y., Sun, R., Han, W., Zhang, Y., Song, Q., Di, C., and Ma, D. (2001). Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett. 509, 191-196.
Clarhaut, J., Fraineau, S., Guilhot, J., Peraudeau, E., Tranoy-Opalinskie, I., Thomas, M., Renoux, B., Randriamalala, E., Bois, P., Chatelier, A., Monvoisin, A., Cronier, L., Papot, S., and Guilhot, F. (2013). A galactosidase-responsive doxorubicin-folate conjugate for selective targeting of acute myelogenous leukemia blasts. Leuk. Res. 37, 948-955.
Codogno, P., Mehrpour, M., and Proikas-Cezanne, T. (2012). Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7-12.
Cotter, T. (2009). Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer. 9, 501-507.
Dai, C., and Gu, W. (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 16, 528-536.
Deans, A., and West, S. (2011). DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer. 11, 467-480.
Dimitrakis, P., Romay-Ogando, M., Timolati, F., Suter, T.M., and Zuppinger, C. (2012). Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes. Cell Tissue Res. 350, 361-372.
Dixit, M., Ansseau, E., Tassin, A., Winokur, S., Shi, R., Qian, H., Sauvage, S., Matteotti, C., Acker, A., Leo, O., Figlewicz, D., Barro, M., Laoudj-Chenivesse, D., Belayew, A., Coppee, F., and Chen, Y. (2007). DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1. PNAS. 104, 18157–18162.
Du, Y., Xiong, L., Tan, W., and Zheng, S. (2009). Reduced expression of programmed cell death 5 protein in tissue of human prostate cancer. Chin. Med. Sci. J. 24, 241-245.
Eiermann, W., Pienkowski, T., Crown, J., Sadeghi, S., Martin, M., Chan, A., Saleh, M., Sehdev, S., Provencher, L., Semiglazov, V., Press, M., Sauter, G., Lindsay, M., Riva, A., Buyse, M., Drevot, P., Taupin, H., and Mackey, J.R. (2011). Phase III study of doxorubicin/cyclophosphamide with concomitant versus sequential docetaxel as adjuvant treatment in patients with human epidermal growth factor 2 –normal, node-positive breast cancer: BCIRG-005 trial. J. Clin. Oncol. 29, 3877-3884.
Escherich, G., Zimmermann, M., and Janka-Schaub, G. (2013). Doxorubicin or daunorubicin given upfront in a therapeutic window are equally effective in children with newly diagnosed acute lymphoblastic leukemia. Pediatr Blood Cancer. 60, 254-257.
Farre, D.,Roset, R.,Huerta, M.,Adsuara, J.,Rosello, L.,Alba, M., and Messeguer, X. (2003). Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31, 3651-3653.
Fuchs, Y., and Steller, H. (2011). Programmed cell death in animal development and disease. Cell. 147, 742-758.
Fulda, S., Debatin, K.M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 25, 4798-4811.
Inoue, S., Browne, G., Melino, G., and Cohen, G.M. (2009). Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Differ. 16, 1053-1061.
Kamine, J., Elangovan, B., Subramanian, T., Coleman, D., and Chinnadurai, G. (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. VIROLOGY 216, 357 – 366.
Kowaljow, V., Marcowycz, A., Ansseau, E., Conde, C., Sauvage, S., Matteotti, C., Arias, C., Corona, D., Nunez, N., Leo, O., Wattiez, R., Figlewicz, D., Laoudj-Chenivesse, D., Belayew, A., Coppee, F., and Rosa, A. (2007). The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscular Disorders. 17, 611-623.
Kruse, J., and Gu, W. (2008). SnapShot: p53 posttranslational modifications. Cell. 133, 930–931.
Lavrik, I.N. (2010). Systems biology of apoptosis signaling networks. Curr. Opin. Biotechnol. 21, 551-555.
Li, H., Wang, Q., Gao, F., Zhu, F., Wang, X., Zhou, C., Liu, C., Chen, Y., Ma, C., Sun, W., and Zhang, L. (2008). Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol. Rep. 20, 573-579.
Li, J., Chu, I., Heo, J., Calvisi, D., Sun, Z., Roskams, T., Durnez, A., Demetris, A., and Thorgeirsson, S. (2004). Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology. 40, 667-676.
Li, Y., Zhou, G., La, L., Chi, X., Cao, Y., Liu, J., Zhang, Z., Chen, Y., and Wu, B. (2013). Transgenic human programmed cell death 5 expression in mice suppresses skin cancer development by enhancing apoptosis. Life Sciences. 92, 1208-1214.
Liao, W., Zhao, R., Lu, L., Zhang, R., Zou, J., Xu, T., Wu, C., Tang, J., Deng, Y., and Lu, X. (2012). Overexpression of a novel osteopetrosis-related gene CCDC154 suppresses cell proliferation by inducing G2/M arrest. Cell cycle. 11, 3270-3279.
Liu, D., Feng, Y., Cheng, Y., and Wang, J. (2004). Human programmed cell death 5 protein has a helical-core and two dissociated structural regions. Biochem. Biophys. Res. Commun. 318, 391-396.
Liu, D., Yao, H., Chen, Y., Feng, Y., Chen, Y., and Wang, J. (2006). The N-terminal 26-residue fragment of human programmed cell death 5 protein can form a stable α -helix having unique electrostatic potential character. Biochemistry. 392, 47-54.
Liu, H., Wang, Y., Zhang, Y., Song, Q., Di, C., Chen, G., Tang, J., and Ma, D. (1998). TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem. Biophys. Res. Commun. 254, 203-210.
Lomovskaya, N., Otten, S.L., Doi-Katayama, Y., Fonsstein, L., Liu, X.C., Takatsu, T., Inventi-Solari, A., Filippini, S., Torti, F., Colombo, A., and Hutchinson R. (1999). Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J. Bacteriol. 181, 305-318.
Ma, X., Ruan, G., and Wang, Y., Li, Q., Zhu, P., Qin, Y., Li, J., Liu, Y., Ma, D., and Zhao, H. (2005). Two single-nucleotide polymorphisms with linkage disequilibrium in the human programmed cell death 5 gene 5’ regulatory region affect promoter activity and the susceptibility of chronic myelogenous leukemia in Chinese population. Clin Cancer Res. 11, 8592-8599.
MacDonald, B., Tamai, K., and He, X. (2009). Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell. 17, 9-26.
Messeguer, X., Escudero, R., Farre, D.,Nunez, O., Martinez, J., and Alba, M. (2002). PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 18, 333-334.
Michaelis, M., Hinsch, N., Michaelis, U.R., Rothweiler, F., Simon, T., ilhelm Doerr, D., Cinatl, J., and Cinatl, J. (2012). Chemotherapy-associated angiogenesis in neuroblastoma tumors. Am. J. Pathol. 180, 1370-1377.
Murray-Zmijewski, F., Lane, D., and Bourdon, J. (2006). p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962-972.
Nitiss, J.L. (2009). Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer. 9, 338-350.
Oren, M., and Rotter, V. (2010). Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2, 3-15.
Oshita, A., Kishida, S., Kobayashi, H., Michiue, T., Asahara, T., Asashima, M., and Kikuchi, A. (2003). Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells. 8, 1005-1017.
Ouyang, L., Shi, Z., Zhao, S., Wang, F.T., Zhou, T.T., Liu, B., and Bao, J.K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45, 487-498.
Papatriantafyllou, M. (2012). Programmed necrosis: putting the pieces together. Nat. Rev. Mol. Cell Biol. 13, 135.
Pommier, Y., Leo, E., Zhang, H., and Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421-433.
Riley, T., Sontag, E., Chen, P., and Levine, A. (2008). Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 9, 402-412.
Rohaly, G., Chemnitz, J., Dehde, S., Nunez, A., Heukeshoven, J., Deppert, W., and Dornreiter, I. (2005). A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell. 122, 21-32.
Ruan, G., Qin, Y., Chen, S., Li, J., Ma, X., Chang, Y., Wang, Y., Fu, J., and Liu, Y. (2006). Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk. Res. 30, 1159-1165.
Rui, M., Chen, Y., Zhang, Y., and Ma, D. (2002). Transfer of anti-TFAR19 monoclonal antibody into HeLa cells by in situ electroporation can inhibit the apoptosis. Life Sci. 71, 1771-1778.
Sapountzi, V., Logan, I., Robson, C. (2006). Cellular functions of TIP60. Int. J. Biochem. Cell Biol. 38, 1496-1509.
Sayers, T.J. (2011). Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol. Immunother. 60, 1173-1180.
Spinola, M., Meyer, P., Kammerer, S., Falvella, S., Boettger, M., Hoyal, C., Pignatiello, C., Fischer, R., Roth, R., Pastorino, U., Haeussinger, K., Nelson, M., Dierkesmann, R., Dragani, T., and Braun, A. (2006). Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J. Clin. Oncol. 24, 1672-1678.
Steele, R., and Lane, D. (2005). p53 in cancer: a paradigm for modern management of cancer. Surgeon. 3, 197-205
Sulli, G., Micco, R., and Fagagna, F. (2012). Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat. Rev. Cancer. 12, 709-720.
Sun, Y., Jiang, X., and Price, B. (2010). Tip60 connecting chromatin to DNA damage signaling. Cell Cycle. 9, 930-936.
Sun, Y., Jiang, X., Chen, S., Fernandes, N., and Price, B. (2005). A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl. Acad. Sci. 102, 13182-13187.
Tam, S., Geller, R., Spiess, C., and Frydman, J. (2006). The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions. Nat. Cell Biol. 8, 1155-1162.
Tang, D., Lotze, M.T., Kang, R., and Zeh, H.J. (2011). Apoptosis promotes early tumorigenesis. Oncogene. 30, 1851-1854.
Tang, Y., Luo, J., Zhang, W., and Gu, W. (2006). Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell. 24, 827-839.
Tassin, A., Laoudj-Chenivesse, D., Vanderplanck, C., Barro, M., Charron, S., Ansseau, E., Chen, Y., Mercier, J., Coppee, F., and Belayew, A. (2013). DUX4 expression in FSHD muscle cells:how could such a rare protein cause a myopathy? J. Cell. Mol. Med. 17, 76-89.
Toledo, F., and Wahl, G. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer. 6, 909-923.
Ventura, A., Kirsch, D., McLaughlin, M., Tuveson, D., Grimm, J., Lintault, L., Newman, J., Reczek, E., Weissleder, R., and Jacks, T. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature. 445, 661-665.
Visvader, J. (2011). Cells of origin in cancer. Nature. 469, 314-322.
Vousden, K., and Lane, D. (2007). P53 in health and disease. Nat. Rev. Mol. Cell Biol. 8, 275-283.
Wajant, H. (2002). The Fas signaling pathway: more than a paradigm. Science. 296, 1635-1636.
Wang, Y., Wang, G., and Zhang, Q. (2011). Determination of PDCD5 in peripheral blood serum of cancer patients. Chin J Cancer Res. 23, 224-228.
Xu, H., Chen, Z., Pan, Y., Fan, L., Guan, J., and Lu, Y. (2012). Transfection of PDCD5 effect on the biological behavior of tumor cells and sensitized gastric cancer cells to cisplatin-induced apoptosis. Dig. Dis. Sci. 57, 1847-1856.
Xu, L., Chen, Y., Song, Q., Xu, D., Wang, Y., and Ma, D. (2009). PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage –induced apoptosis. Neoplasia. 11, 345-354.
Xu, L., Hu, J., Zhao, Y., Hu, J., Xiao, J., Wang, Y., Ma, D., and Chen, Y. (2012). PDCD5 interacts with p53 and functions as a positive regulator in the p53 pathway. Apoptosis. 17, 1235-1245.
Yang, Y., Zhao, M., Li, W., Chen, Y., Kang, B., and Lu, Y. (2006). Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis. 11, 993-1001.
Yao, H., Feng, Y., Zhou, T., Wang, J., and Wang, Z. (2012). NMR studies of the interaction between human programmed cell death 5 and human p53. Biochemistry. 51, 2684-2693.
Yao, H., Feng, Y., Zhou, T., Wang, J., and Wang, Z. (2012). NMR studies of the interaction between human programmed cell death 5 and human p53. Biochemistry. 51, 2684-2693.
Yao, H., Xu, L., Feng, Y., Liu, D., Chen, Y., and Wang, J. (2009). Structure–function correlation of human programmed cell death 5 protein. Arch. Biochem. Biophys. 486, 141-149.
Yin, A., Jiang, Y., Zhang, X., Zhao, J., and Luo, H. (2010). Transfection of PDCD5 sensitizes colorectal cancer cells to cisplatin-induced apoptosis in vitro and in vivo. Eur J Pharmacol. 649, 120-126.
Zhou, Y., Liu, F., Zhu, Z., Zhu, H., Zhang, X., Wang, Z., Liu, J., and Han, Z. (2004). N-glycosylation is required for efficient secretion of a novel human secreted glycoprotein, hPAP21. FEBS Letters. 576, 401-407.
Zhuge, C., Chang, Y., Li, Y., Chen, Y., and Lei, J. (2011). PDCD5-regulated cell fate decision after ultraviolet-irradiation-induced DNA damage. Biophys. J. 101, 2582-2591.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59041-
dc.description.abstractProgrammed cell death 5 (PDCD5) 最早是自人類紅白血病細胞TF-1中分離出的基因。當TF-1細胞因缺乏生長因子而導致細胞凋亡時,PDCD5 蛋白質會高度表現。目前研究指出PDCD5在某些癌細胞的基本表達量較少,像是前列腺癌、胃癌和軟骨肉瘤等。而有研究指出若在癌細胞中過度表達PDCD5,可以增加癌細胞對於抗癌藥物的敏感度。由於PDCD5可能與腫瘤的增生與惡化相關,因此進一步探討其與腫瘤抑制基因p53之間的相關性。目前已知p53藉由調控細胞凋亡與細胞週期的停止來影響腫瘤的增生與惡化以及腫瘤對於抗癌藥物的敏感性。研究指出PDCD5可藉由組蛋白乙醯轉移酶Tip60作用於p53第120個胺基酸而活化細胞凋亡途徑。再者,PDCD5蛋白質可能藉由和p53蛋白質作用來影響p53下游基因的表現。因此,本研究的目標是進一步釐清PDCD5和p53在轉錄與轉譯過程中是否相互影響。藉由轉錄因子分析軟體我們預測出PDCD5啟動子區域中具p53結合區,但p53的角色是促進或抑制PDCD5的表達仍未知。當在人類腎臟細胞HEK293T過度表達PDCD5與p53時,發現p53可能降低PDCD5在轉錄與轉譯層面的表現。在人類大腸癌細胞株HCT116中,發現PDCD5在沒有p53的細胞株中表達較高。此外,由於PDCD5具DNA的結合區,因此經由染色質免疫沉澱法和核酸定序分析PDCD5可能直接調節的基因。過度表達PDCD5,發現和肌肉萎縮症相關的基因DUX4L4的表達在轉錄層面增加。由於之前有研究指出在心肌細胞過度表達PDCD5的基因轉殖鼠中,會藉由另一種細胞死亡的途徑-細胞自噬造成心臟肥大最後導致心臟衰竭。PDCD5在心臟細胞的表現量又高於其他身體組織,因此我們希望可以在後續的實驗進一步分析PDCD5是否會在心肌細胞中調節DUX4L4。另一可能基因為CCDC88C,能負調控Wnt的訊息傳遞,均有待進一步研究。zh_TW
dc.description.abstractProgrammed cell death 5 (PDCD5) is a protein identified from TF-1 cells during apoptosis process induced by growth factor deprivation. PDCD5 has been shown down-regulated in many cancer tissues. Overexpression of PDCD5 sensitizes cancer cells to chemotherapeutic agents. The tumor suppressor gene p53 induces apoptotic cell death and causes cell cycle arrest. P53 plays an important role in controlling the cellular response to DNA damage. Loss of p53 function causes increased resistance to chemotherapeutic agents, and p53 mutation is an important determinant of clinical outcome in cancer. Previously PDCD5 was shown to interact with Tip60, a histone acetyltransferase, and increase Tip60-dependent K120 acetylation of p53, which is essential for p53-dependent apoptosis. PDCD5 was also shown to interact with p53 and serves as a co-activator of p53 to regulate gene transcription, resulting in cell cycle arrest upon DNA damage. In this study, we focused on the relationship between PDCD5 and p53. Since the binding sites for p53 were predicted in PDCD5 promoter, we reasoned that PDCD5 might be a target gene of p53. We found that the mRNA and protein levels were decreased in HEK293T cells over-expressing p53. In the p53-deficient HCT116 colon cancer cells PDCD5 was also higher constitutively. Over-expression of PDCD5 in HEK293T cells had no significant effects on the expression of p53. By ChIP-Seq, we also identified DUX4L4 and mRNA expression was increased when PDCD5 was overexpressed in HEK293T cells. The double homeobox protein 4-like protein 4 (DUX4L4) gene was associated with facioscapulohumeral muscular dystrophy (FSHD) and the DUX4 mRNAs can be translated and localizes to the cell nuclei. DUX4L4 is a nuclear protein and it belongs to DUX4 family. This raised the possibility that PDCD5 might regulate DUX4 in the heart. DUX4 expression in cell culture alters the inner-nuclear envelope distribution of emerin and leads to cell death via apoptosis. In summary, the regulation of PDCD5 expression was mediated by p53 and DUX4L4 and perhaps CCDC88C as potential target genes of PDCD5.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:46:17Z (GMT). No. of bitstreams: 1
ntu-102-R00443015-1.pdf: 4065488 bytes, checksum: 1190a95f9a1b96647365d005b4aeb507 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書………………………………………………………………………I
中文摘要...........................................................II
Abstract………………………………………………………………………………III
List of abbreviation………………………………………………………………….V
Contents……………………………………………………………………………...VII
Contents of Figures………………………………………………………………..IX
Contents of Tables…………………………………………………………………...X

Chapter1. Introduction………………………………………………………1
1.1 Programmed cell death 5………………………………………………………...2
1.1.1 PDCD5 description…………………………………………………………….2
1.1.2 PDCD5 expression and localization……………………………………………2
1.1.3 The structure and function of PDCD5 protein…………………………………3
1.1.4 PDCD5 and apoptosis………………………………………………………….6
1.1.5 PDCD5 and autophagy…………………………………………………………7
1.1.6 PDCD5 and cancers…………………………………………………………….8
1.2 TP53………………………………………………………………………………..10
1.2.1 P53 description…………………………………………………………………10
1.2.2 P53 activation and regulation of downstream targets…………………………..10
1.2.3 The structure and function of p53………………………………………………11
1.2.4 Post-translational modification of p53………………………………………….11
1.2.5 Relationship between PDCD5 and p53………………………………………...12
1.3 DNA damage response…………………………………………………………….13
1.4 Tip60……………………………………………………………………………….13
1.4.1 Tip60 description……………………………………………………………….13
1.4.2 Tip60 and PDCD5 in the p53 pathway…………………………………………14
1.4.3 Tip60 and DNA double strand break response…………………………………14
1.5 Doxorubicin………………………………………………………………………..14
1.5.1 Drug description………………………………………………………………..14
1.5.2 Drug mechanism………………………………………………………………..15
1.5.3 The anticancer effect of drug…………………………………………………..16
1.5.4 The drug side effect……………………………………………………………16
1.6 Motivation…………………………………………………………………………17
Chapter2. Materials and Methods…………………………………….19
2.1 Cell lines and culture conditions………………………………………………..20
2.2 Cell treatments…………………………………………………………………..20
2.3 Plasmid constructs for overexpression and knockdown……………………...20
2.3.1 PDCD5 knockdown…………………………………………………………..20
2.3.2 PDCD5 overexpression………………………………………………………..21
2.3.3 P53 overexpression…………………………………………………………….21
2.3.4 Cell sorting…………………………………………………………………….22
2.4 Immunoblot and antibodies……………………………………………………...22
2.5 RNA extraction and semi-quantitative PCR…………………………………....23
2.6 Taqman Q-PCR…………………………………………………………………...24
2.7 Immunoprecipitation……………………………………..……………………….25
Chapter3. Results…………………………………………………………...…26
3.1 Putative binding sites of p53 transcription factor in human PDCD5 gene promoter…………………………………………………………………………..27
3.2 Over-expression of p53 in HEK293T cells down-regulated transcription
and translation of human PDCD5gene………………………............................30
3.3 PDCD5 expression is induced following doxorubicin treatment in
HCT116 cells……………..…………………………………………......................31
3.4 Over-expression of PDCD5 had no significant effects on the expression
of p53 in HEK293T cells……………………..….………………………….….....33
3.5 Genetic knowdowns of PDCD5 resulted in increased susceptibility to DNA damage…………………………………………………………………………......34
3.6 The potential target genes of PDCD5……………………………………………35
Chapter4. Discussions…………………….………..........................…………37
Figures and Tables……………………………………………………………..45
References…………………………………………………………………………74
Appendix…………………………………………………………………………...83
Contents of figures
Figure 3-1. A schematic diagram of human PDCD5 gene and cross-species sequence alignment………………………………………………………47
Figure 3-2. Human PDCD5 promoter region contains multiple binding sites
for p53 transcription factor……………………………………………..51
Figure 3-3. Overexpression of p53 in HEK293T cells resulted in a decrease of PDCD5 expression at transcriptional and translational levels……….54
Figure 3-4. Co-immunoprecipitation of PDCD5 and p53 in HEK293T cells transiently transfected with Flag-p53 and EGFP-PDCD5 / PDCD5-EGFP…………………………………………………………..57
Figure 3-5. The mRNAs and proteins of PDCD5 increased in HCT116 cells in response to doxorubicin in a dose-dependent manner………………..60
Figure 3-6. Expression of p53 and PDCD5 was inversely correlated following doxorubicin treatment……………………………………………………61
Figure 3-7. Overexpression of PDCD5 reduced the expression level of p53 in HEK293T cells…………………………………………………………...64
Figure 3-8. Genetic knockdown of PDCD5 by shRNA enhanced the levels of phospho-γH2AX in response to doxorubicin in HEK293T cells……...67
Figure 3-9. Validation of potential target genes identified by chromatin immunoprecipitation-sequencing (ChIP-Seq) of overexpressed
PDCD5……………………………………………………………………69
Figure 3-10. The cDNA alignment of DUX4 and DUX4L4…………………………72
Contents of tables
Table 2-1 Primers used in Q-PCR analysis to detect the gene expression of
human…………………………………………………………….…...73
dc.language.isoen
dc.subject細胞凋亡zh_TW
dc.subjectPDCD5en
dc.title探討PDCD5和p53在細胞中的分子機制zh_TW
dc.titleMolecular relationship between programmed cell death 5 and p53en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑華,俞松良
dc.subject.keyword細胞凋亡,zh_TW
dc.subject.keywordPDCD5,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved