Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorRuei-Liang Yanen
dc.contributor.author顏睿良zh_TW
dc.date.accessioned2021-06-16T08:46:06Z-
dc.date.available2025-07-09
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-07-12
dc.identifier.citation1 Klionsky, D. J. Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740-743, doi:10.4161/auto.6398 (2008).
2 Tsukada, M. Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS letters 333, 169-174, doi:10.1016/0014-5793(93)80398-e (1993).
3 Jiang, P. Mizushima, N. Autophagy and human diseases. Cell research 24, 69-79 (2014).
4 Kaushik, S. et al. Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO reports 13, 258-265, doi:10.1038/embor.2011.260 (2012).
5 Chang, J. T., Kumsta, C., Hellman, A. B., Adams, L. M. Hansen, M. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. eLife 6, doi:10.7554/eLife.18459 (2017).
6 Demontis, F. Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143, 813-825, doi:10.1016/j.cell.2010.10.007 (2010).
7 Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884, doi:10.1038/nature04723 (2006).
8 Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. The Journal of cell biology 169, 425-434, doi:10.1083/jcb.200412022 (2005).
9 Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889, doi:10.1038/nature04724 (2006).
10 Pickford, F. et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. The Journal of clinical investigation 118, 2190-2199, doi:10.1172/jci33585 (2008).
11 Rubinsztein, D. C., Mariño, G. Kroemer, G. Autophagy and aging. Cell 146, 682-695, doi:10.1016/j.cell.2011.07.030 (2011).
12 Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (New York, N.Y.) 331, 456-461, doi:10.1126/science.1196371 (2011).
13 Kim, J., Kundu, M., Viollet, B. Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature cell biology 13, 132-141, doi:10.1038/ncb2152 (2011).
14 Shang, L. et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proceedings of the National Academy of Sciences of the United States of America 108, 4788-4793, doi:10.1073/pnas.1100844108 (2011).
15 Kang, S. A. et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science (New York, N.Y.) 341, 1236566, doi:10.1126/science.1236566 (2013).
16 Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Molecular biology of the cell 20, 1981-1991, doi:10.1091/mbc.e08-12-1248 (2009).
17 Ragusa, M. J., Stanley, R. E. Hurley, J. H. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151, 1501-1512, doi:10.1016/j.cell.2012.11.028 (2012).
18 Chan, E. Y., Longatti, A., McKnight, N. C. Tooze, S. A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Molecular and cellular biology 29, 157-171, doi:10.1128/mcb.01082-08 (2009).
19 Karanasios, E. et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. Journal of cell science 126, 5224-5238, doi:10.1242/jcs.132415 (2013).
20 Webster, C. P. et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. The EMBO journal 35, 1656-1676, doi:10.15252/embj.201694401 (2016).
21 Matsunaga, K. et al. Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. The Journal of cell biology 190, 511-521, doi:10.1083/jcb.200911141 (2010).
22 Itakura, E. Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764-776, doi:10.4161/auto.6.6.12709 (2010).
23 Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. The Journal of cell biology 182, 685-701, doi:10.1083/jcb.200803137 (2008).
24 Fan, W., Nassiri, A. Zhong, Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proceedings of the National Academy of Sciences of the United States of America 108, 7769-7774, doi:10.1073/pnas.1016472108 (2011).
25 Panaretou, C., Domin, J., Cockcroft, S. Waterfield, M. D. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. The Journal of biological chemistry 272, 2477-2485, doi:10.1074/jbc.272.4.2477 (1997).
26 Huang, W. et al. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell research 22, 473-489, doi:10.1038/cr.2012.24 (2012).
27 Russell, R. C. et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nature cell biology 15, 741-750, doi:10.1038/ncb2757 (2013).
28 Park, J. M. et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy 12, 547-564, doi:10.1080/15548627.2016.1140293 (2016).
29 Egan, D. F. et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Molecular cell 59, 285-297, doi:10.1016/j.molcel.2015.05.031 (2015).
30 Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. The EMBO journal 19, 4577-4588, doi:10.1093/emboj/19.17.4577 (2000).
31 Dooley, H. C. et al. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Molecular cell 55, 238-252, doi:10.1016/j.molcel.2014.05.021 (2014).
32 Sugawara, K. et al. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes to cells : devoted to molecular cellular mechanisms 9, 611-618, doi:10.1111/j.1356-9597.2004.00750.x (2004).
33 Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO journal 19, 5720-5728, doi:10.1093/emboj/19.21.5720 (2000).
34 Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Molecular biology of the cell 19, 4651-4659, doi:10.1091/mbc.e08-03-0312 (2008).
35 Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. The EMBO journal 29, 1792-1802, doi:10.1038/emboj.2010.74 (2010).
36 Reggiori, F. Ungermann, C. Autophagosome Maturation and Fusion. Journal of molecular biology 429, 486-496, doi:10.1016/j.jmb.2017.01.002 (2017).
37 Jahreiss, L., Menzies, F. M. Rubinsztein, D. C. The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic (Copenhagen, Denmark) 9, 574-587, doi:10.1111/j.1600-0854.2008.00701.x (2008).
38 Kimura, S., Noda, T. Yoshimori, T. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell structure and function 33, 109-122, doi:10.1247/csf.08005 (2008).
39 Nakamura, S. Yoshimori, T. New insights into autophagosome-lysosome fusion. Journal of cell science 130, 1209-1216, doi:10.1242/jcs.196352 (2017).
40 Itakura, E., Kishi, C., Inoue, K. Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 19, 5360-5372, doi:10.1091/mbc.e08-01-0080 (2008).
41 Funderburk, S. F., Wang, Q. J. Yue, Z. The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends in cell biology 20, 355-362, doi:10.1016/j.tcb.2010.03.002 (2010).
42 Nguyen, N., Shteyn, V. Melia, T. J. Sensing Membrane Curvature in Macroautophagy. Journal of molecular biology 429, 457-472, doi:10.1016/j.jmb.2017.01.006 (2017).
43 Brier, L. W. et al. Regulation of LC3 lipidation by the autophagy-specific class III phosphatidylinositol-3 kinase complex. Molecular biology of the cell 30, 1098-1107, doi:10.1091/mbc.E18-11-0743 (2019).
44 Rostislavleva, K. et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science (New York, N.Y.) 350, aac7365, doi:10.1126/science.aac7365 (2015).
45 Ma, M. et al. Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2. Cell research 27, 989-1001, doi:10.1038/cr.2017.94 (2017).
46 Baskaran, S. et al. Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex. eLife 3, doi:10.7554/eLife.05115 (2014).
47 Miller, S. et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science (New York, N.Y.) 327, 1638-1642, doi:10.1126/science.1184429 (2010).
48 Stjepanovic, G., Baskaran, S., Lin, M. G. Hurley, J. H. Vps34 Kinase Domain Dynamics Regulate the Autophagic PI 3-Kinase Complex. Molecular cell 67, 528-534.e523, doi:10.1016/j.molcel.2017.07.003 (2017).
49 Stjepanovic, G., Baskaran, S., Lin, M. G. Hurley, J. H. Unveiling the role of VPS34 kinase domain dynamics in regulation of the autophagic PI3K complex. Molecular cellular oncology 4, e1367873, doi:10.1080/23723556.2017.1367873 (2017).
50 Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101-108, doi:10.1038/nature11233 (2012).
51 Anderson, D. M. et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160, 595-606, doi:10.1016/j.cell.2015.01.009 (2015).
52 Matsumoto, A. et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 541, 228-232, doi:10.1038/nature21034 (2017).
53 Nelson, B. R. et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science (New York, N.Y.) 351, 271-275, doi:10.1126/science.aad4076 (2016).
54 Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science (New York, N.Y.) 367, 1140-1146, doi:10.1126/science.aay0262 (2020).
55 Huang, J. Z. et al. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Molecular cell 68, 171-184.e176, doi:10.1016/j.molcel.2017.09.015 (2017).
56 Washietl, S., Kellis, M. Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome research 24, 616-628, doi:10.1101/gr.165035.113 (2014).
57 Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes development 25, 1915-1927, doi:10.1101/gad.17446611 (2011).
58 Palazzo, A. F. Lee, E. S. Non-coding RNA: what is functional and what is junk? Frontiers in genetics 6, 2, doi:10.3389/fgene.2015.00002 (2015).
59 Wu, H., Yang, L. Chen, L. L. The Diversity of Long Noncoding RNAs and Their Generation. Trends in genetics : TIG 33, 540-552, doi:10.1016/j.tig.2017.05.004 (2017).
60 Diederichs, S. The four dimensions of noncoding RNA conservation. Trends in genetics : TIG 30, 121-123, doi:10.1016/j.tig.2014.01.004 (2014).
61 Kopp, F. Mendell, J. T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 172, 393-407, doi:10.1016/j.cell.2018.01.011 (2018).
62 Wang, K. C. Chang, H. Y. Molecular mechanisms of long noncoding RNAs. Molecular cell 43, 904-914, doi:10.1016/j.molcel.2011.08.018 (2011).
63 Yao, R. W., Wang, Y. Chen, L. L. Cellular functions of long noncoding RNAs. Nature cell biology 21, 542-551, doi:10.1038/s41556-019-0311-8 (2019).
64 Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311-1323, doi:10.1016/j.cell.2007.05.022 (2007).
65 Gupta, R. A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-1076, doi:10.1038/nature08975 (2010).
66 Lee, S. et al. Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell 164, 69-80, doi:10.1016/j.cell.2015.12.017 (2016).
67 Sasaki, Y. T., Ideue, T., Sano, M., Mituyama, T. Hirose, T. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proceedings of the National Academy of Sciences of the United States of America 106, 2525-2530, doi:10.1073/pnas.0807899106 (2009).
68 Chen, L. L. Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Molecular cell 35, 467-478, doi:10.1016/j.molcel.2009.06.027 (2009).
69 Sunwoo, H. et al. MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome research 19, 347-359, doi:10.1101/gr.087775.108 (2009).
70 Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular cell 33, 717-726, doi:10.1016/j.molcel.2009.01.026 (2009).
71 Nakagawa, S. Hirose, T. Paraspeckle nuclear bodies--useful uselessness? Cellular and molecular life sciences : CMLS 69, 3027-3036, doi:10.1007/s00018-012-0973-x (2012).
72 Jégu, T., Aeby, E. Lee, J. T. The X chromosome in space. Nature reviews. Genetics 18, 377-389, doi:10.1038/nrg.2017.17 (2017).
73 Zhuo, C., Jiang, R., Lin, X. Shao, M. LncRNA H19 inhibits autophagy by epigenetically silencing of DIRAS3 in diabetic cardiomyopathy. Oncotarget 8, 1429-1437, doi:10.18632/oncotarget.13637 (2017).
74 Liu, X. et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress. Nature cell biology 18, 431-442, doi:10.1038/ncb3328 (2016).
75 Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033-1038, doi:10.1038/nature09144 (2010).
76 Chen, C. L. et al. Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 44, 71-81, doi:10.1016/j.biomaterials.2014.12.023 (2015).
77 Guo, D. et al. Down-Regulation of Lncrna MALAT1 Attenuates Neuronal Cell Death Through Suppressing Beclin1-Dependent Autophagy by Regulating Mir-30a in Cerebral Ischemic Stroke. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 43, 182-194, doi:10.1159/000480337 (2017).
78 Ma, Y. et al. PVT1 affects growth of glioma microvascular endothelial cells by negatively regulating miR-186. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 39, 1010428317694326, doi:10.1177/1010428317694326 (2017).
79 Kang, Y. et al. PCGEM1 stimulates proliferation of osteoarthritic synoviocytes by acting as a sponge for miR-770. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 34, 412-418, doi:10.1002/jor.23046 (2016).
80 Lu, D., Yang, C., Zhang, Z., Cong, Y. Xiao, M. Knockdown of Linc00515 Inhibits Multiple Myeloma Autophagy and Chemoresistance by Upregulating miR-140-5p and Downregulating ATG14. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 48, 2517-2527, doi:10.1159/000492690 (2018).
81 Zhang, W., Zhang, Y. Xi, S. Upregulation of lncRNA HAGLROS enhances the development of nasopharyngeal carcinoma via modulating miR-100/ATG14 axis-mediated PI3K/AKT/mTOR signals. Artificial cells, nanomedicine, and biotechnology 47, 3043-3052, doi:10.1080/21691401.2019.1640233 (2019).
82 Wang, K. et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature communications 6, 6779, doi:10.1038/ncomms7779 (2015).
83 Viereck, J. et al. Long noncoding RNA Chast promotes cardiac remodeling. Science translational medicine 8, 326ra322, doi:10.1126/scitranslmed.aaf1475 (2016).
84 Joo, J. H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell 43, 572-585, doi:10.1016/j.molcel.2011.06.018 (2011).
85 Li, X. et al. Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nature communications 3, 662, doi:10.1038/ncomms1648 (2012).
86 Barra, J. Leucci, E. Probing Long Non-coding RNA-Protein Interactions. Frontiers in molecular biosciences 4, 45, doi:10.3389/fmolb.2017.00045 (2017).
87 Lu, Z. Chang, H. Y. Decoding the RNA structurome. Current opinion in structural biology 36, 142-148, doi:10.1016/j.sbi.2016.01.007 (2016).
88 Gemmill, D., D'Souza, S., Meier-Stephenson, V. Patel, T. R. Current approaches for RNA-labelling to identify RNA-binding proteins. Biochemistry and cell biology = Biochimie et biologie cellulaire 98, 31-41, doi:10.1139/bcb-2019-0041 (2020).
89 Jazurek, M., Ciesiolka, A., Starega-Roslan, J., Bilinska, K. Krzyzosiak, W. J. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic acids research 44, 9050-9070, doi:10.1093/nar/gkw803 (2016).
90 Morris, D. H., Yip, C. K., Shi, Y., Chait, B. T. Wang, Q. J. BECLIN 1-VPS34 COMPLEX ARCHITECTURE: UNDERSTANDING THE NUTS AND BOLTS OF THERAPEUTIC TARGETS. Frontiers in biology 10, 398-426, doi:10.1007/s11515-015-1374-y (2015).
91 Han, P. et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102-106, doi:10.1038/nature13596 (2014).
92 Yang, F. et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Molecular cell 49, 1083-1096, doi:10.1016/j.molcel.2013.01.010 (2013).
93 Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Molecular cell 38, 662-674, doi:10.1016/j.molcel.2010.03.021 (2010).
94 Liu, B. et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer cell 27, 370-381, doi:10.1016/j.ccell.2015.02.004 (2015).
95 Seo, M., Lei, L. Egli, M. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes. Current protocols in nucleic acid chemistry 76, e70, doi:10.1002/cpnc.70 (2019).
96 Wheeler, E. C., Van Nostrand, E. L. Yeo, G. W. Advances and challenges in the detection of transcriptome-wide protein-RNA interactions. Wiley interdisciplinary reviews. RNA 9, doi:10.1002/wrna.1436 (2018).
97 Backer, J. M. The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. The Biochemical journal 473, 2251-2271, doi:10.1042/bcj20160170 (2016).
98 Xu, D. Q. et al. PAQR3 controls autophagy by integrating AMPK signaling to enhance ATG14L-associated PI3K activity. The EMBO journal 35, 496-514, doi:10.15252/embj.201592864 (2016).
99 Ma, B. et al. Dapper1 promotes autophagy by enhancing the Beclin1-Vps34-Atg14L complex formation. Cell research 24, 912-924, doi:10.1038/cr.2014.84 (2014).
100 Zhao, Y. et al. RACK1 Promotes Autophagy by Enhancing the Atg14L-Beclin 1-Vps34-Vps15 Complex Formation upon Phosphorylation by AMPK. Cell reports 13, 1407-1417, doi:10.1016/j.celrep.2015.10.011 (2015).
101 Ohashi, Y., Tremel, S. Williams, R. L. VPS34 complexes from a structural perspective. Journal of lipid research 60, 229-241, doi:10.1194/jlr.R089490 (2019).
102 Araki, Y. et al. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. The Journal of cell biology 203, 299-313, doi:10.1083/jcb.201304123 (2013).
103 Young, L. N., Goerdeler, F. Hurley, J. H. Structural pathway for allosteric activation of the autophagic PI 3-kinase complex I. Proceedings of the National Academy of Sciences of the United States of America 116, 21508-21513, doi:10.1073/pnas.1911612116 (2019).
104 Dikic, I. Proteasomal and Autophagic Degradation Systems. Annual review of biochemistry 86, 193-224, doi:10.1146/annurev-biochem-061516-044908 (2017).
105 Ding, W. X. et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. The American journal of pathology 171, 513-524, doi:10.2353/ajpath.2007.070188 (2007).
106 Kageyama, S. et al. Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. The Journal of biological chemistry 289, 24944-24955, doi:10.1074/jbc.M114.580357 (2014).
107 Milan, E. et al. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy 11, 1161-1178, doi:10.1080/15548627.2015.1052928 (2015).
108 Pandey, U. B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863, doi:10.1038/nature05853 (2007).
109 Lim, J. et al. Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS genetics 11, e1004987, doi:10.1371/journal.pgen.1004987 (2015).
110 Zhu, K., Dunner, K., Jr. McConkey, D. J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451-462, doi:10.1038/onc.2009.343 (2010).
111 Milani, M. et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer research 69, 4415-4423, doi:10.1158/0008-5472.can-08-2839 (2009).
112 Sha, Z., Schnell, H. M., Ruoff, K. Goldberg, A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. The Journal of cell biology 217, 1757-1776, doi:10.1083/jcb.201708168 (2018).
113 Kocaturk, N. M. Gozuacik, D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Frontiers in cell and developmental biology 6, 128, doi:10.3389/fcell.2018.00128 (2018).
114 Demishtein, A. et al. SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy 13, 1697-1708, doi:10.1080/15548627.2017.1356549 (2017).
115 Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science (New York, N.Y.) 332, 1429-1433, doi:10.1126/science.1204592 (2011).
116 Suraweera, A., Münch, C., Hanssum, A. Bertolotti, A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Molecular cell 48, 242-253, doi:10.1016/j.molcel.2012.08.003 (2012).
117 Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of biological chemistry 282, 24131-24145, doi:10.1074/jbc.M702824200 (2007).
118 Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Molecular cell 33, 505-516, doi:10.1016/j.molcel.2009.01.020 (2009).
119 Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. Journal of cell science 126, 580-592, doi:10.1242/jcs.114926 (2013).
120 Rui, Y. N. et al. Huntingtin functions as a scaffold for selective macroautophagy. Nature cell biology 17, 262-275, doi:10.1038/ncb3101 (2015).
121 Turco, E. et al. FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates. Molecular cell 74, 330-346.e311, doi:10.1016/j.molcel.2019.01.035 (2019).
122 Wong, E. et al. Molecular determinants of selective clearance of protein inclusions by autophagy. Nature communications 3, 1240, doi:10.1038/ncomms2244 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59038-
dc.description.abstract細胞自噬為真核生物中具高度保留性的機制,可透過降解細胞自身物質,並將其回收再利用以對抗飢餓逆境。當今科學發展已闡明了細胞自噬在許多疾病中所扮演的角色,然其中之詳細分子機制則尚未明朗。此外,長鏈非編碼RNA在近年也引起了廣泛的關注,因其能參與調控許多的生物途徑,其中包括細胞自噬。然而,多數調控細胞自噬的長鏈非編碼RNA,主要為調節細胞自噬相關基因的表現。本研究中,我們發現一新穎長鏈非編碼RNA BCRP3,能作為基礎及飢餓條件下,細胞自噬的正向調控者。我們發現BCRP3基因敲落會損害自噬小體,及早期自噬相關結構的形成,但卻不會影響更上游的基酶活性,包含:ULK1、AMPK及mTOR。有趣的是,RNA pulldown與RNA免疫沉澱分析皆顯示BCRP3會與Vps34聚合體結合。儘管這樣的交互作用不影響Vps34聚合體的完整性,以及Beclin-1的寡聚化,BCPR3能夠直接地提升Vps34聚合體的酵素活性。此外,我們也發現BCRP3表現量會在蛋白酶體抑制所引發的細胞自噬中有所上升。綜觀而言,我們的研究揭示了BCRP3做為細胞自噬正向調控者的角色,透過提升Vps34聚合體的活性來促進Vps34所介導的自噬啟動,並暗示了BCRP3上調對蛋白酶體抑制誘導的細胞自噬的貢獻。zh_TW
dc.description.abstractAutophagy is a conserved self-eating process for recycling metabolic building blocks during starvation. Recent advances have elucidated the role of autophagy in many diseases, but the molecular detail is not fully understood. To date, long non-coding RNAs (lncRNAs) have drawn great attention as important regulators in different biological processes, including autophagy. However, most of the autophagy-modulating lncRNAs function by regulating autophagy-related gene expression. Here, we identified a novel lncRNA BCRP3 as a positive regulator of autophagy in basal and starvation conditions. We showed that BCRP3 depletion impairs the formation of autophagosome and also the early autophagic structures, omegasome and phagophore. However, BCRP3 deficiency does not change the kinase activities of ULK1, AMPK and mTOR. Interestingly, BCRP3 associates with multiple subunits of Vps34 complex as detected by RNA pulldown and RNA immunoprecipitation assays. However, BCRP3 affects neither the integrity of Vps34 complex nor the oligomerization of Beclin-1. Instead, BCRP3 directly increases the enzymatic activity of Vps34 complex both in vivo and in vitro. We further showed that BCRP3 is upregulated upon proteasome inhibition, a condition known to induce autophagy. Together, our data reveal the function of BCRP3 as a positive regulator of autophagy by promoting Vps34-mediated autophagy initiation and suggest a contribution of BCRP3 upregulation to proteasome inhibition-induced autophagy.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:46:06Z (GMT). No. of bitstreams: 1
U0001-0807202014412200.pdf: 1972808 bytes, checksum: 30dc3f54073fb4f0d3878ccdf78cdf4c (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員審定書
謝辭...................................................................................................................................i
中文摘要..........................................................................................................................ii
Abstract ............................................................................................................................iii
I. Introduction ..........................................................................................................1
1. Autophagy.........................................................................................................1
1-1. Physiological and pathological view of autophagy.............................1
1-2. Autophagosome biogenesis and maturation........................................3
1-3. Structural and functional regulation of PI3K complex........................8
2. Long non-coding RNA (lncRNA)..................................................................10
2-1. Characteristics of lncRNA................................................................10
2-2. Cellular functions of lncRNA............................................................11
2-3. lncRNA in autophagy........................................................................13
II. Materials and Methods.........................................................................................17
Plasmids...........................................................................................................17
Oligonucleotides..............................................................................................17
Antibodies........................................................................................................17
Chemicals........................................................................................................19
Primers.............................................................................................................19
Cell Culture and Transfection..........................................................................20
Lentiviral package and transduction.................................................................20
Western Blotting..............................................................................................20
Immunoprecipitation.......................................................................................21
Immunofluorescence.......................................................................................21
Quantitative real-time PCR (qRT-PCR) ..........................................................22
Subcellular fractionation assay........................................................................22
RNA immunoprecipitation..............................................................................23
RNA pull-down assay......................................................................................23
PI3K kinase assay............................................................................................24
III. Results.................................................................................................................26
IV. Discussions..........................................................................................................32
V. References...........................................................................................................42
VI. Figures.................................................................................................................58
dc.language.isoen
dc.subject長鏈非編碼RNAzh_TW
dc.subjectBeclin-1zh_TW
dc.subjectVps34聚合體zh_TW
dc.subject細胞自噬zh_TW
dc.subjectautophagyen
dc.subjectBeclin-1en
dc.subjectVps34 complexen
dc.subjectlncRNAen
dc.title一新穎長鏈非編碼RNA透過活化Vps34 複合體來促進細胞自噬的啟動zh_TW
dc.titleA novel lncRNA facilitates autophagy initiation through the activation of Vps34 complexen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳光超(Guang-Chao Chen),蔡欣祐(Hsin-Yue Tsai)
dc.subject.keyword細胞自噬,長鏈非編碼RNA,Vps34聚合體,Beclin-1,zh_TW
dc.subject.keywordautophagy,lncRNA,Vps34 complex,Beclin-1,en
dc.relation.page70
dc.identifier.doi10.6342/NTU202001384
dc.rights.note有償授權
dc.date.accepted2020-07-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-0807202014412200.pdf
  未授權公開取用
1.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved