請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58987完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Si Wei Chu) | |
| dc.contributor.author | Yen-Jun Huang | en |
| dc.contributor.author | 黃彥鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:42:54Z | - |
| dc.date.available | 2015-09-07 | |
| dc.date.copyright | 2013-09-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-28 | |
| dc.identifier.citation | 1. Adamczyk, Z. & Weroński, P. Random sequential adsorption on partially covered surfaces. J. Chem. Phys. 108, 9851 (1998).
2. Zembala, M. & Adamczyk, Z. Measurements of Streaming Potential for Mica Covered by Colloid Particles. Langmuir 16, 1593–1601 (2000). 3. Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X. & Williams, D. E. Point of Care Diagnostics: Status and Future. Anal. Chem. 84, 487–515 (2012). 4. Zheng, Y., Nguyen, J., Wei, Y. & Sun, Y. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab. Chip (2013). doi:10.1039/c3lc50355k 5. Yeh, J.-W., Taloni, A., Chen, Y.-L. & Chou, C.-F. Entropy-Driven Single Molecule Tug-of-War of DNA at Micro−Nanofluidic Interfaces. Nano Lett. 12, 1597–1602 (2012). 6. Zheng, Y., Shojaei-Baghini, E., Azad, A., Wang, C. & Sun, Y. High-throughput biophysical measurement of human red blood cells. Lab. Chip 12, 2560 (2012). 7. Pandey, R. & Conrad, J. C. Effects of attraction strength on microchannel flow of colloid–polymer depletion mixtures. Soft Matter 8, 10695 (2012). 8. Stimberg, V. C., Bomer, J. G., van Uitert, I., van den Berg, A. & Le Gac, S. High Yield, Reproducible and Quasi-Automated Bilayer Formation in a Microfluidic Format. Small 9, 1076–1085 (2013). 9. Bremond, N. & Bibette, J. Exploring emulsion science with microfluidics. Soft Matter 8, 10549 (2012). 10. Garstecki, P. in Microfluid. Based Microsystems (Kakac, S., Kosoy, B., Li, D. & Pramuanjaroenkij, A.) 163–181 (Springer Netherlands, 2010). at <http://link.springer.com/10.1007/978-90-481-9029-4_9> 11. Colin, A., Squires, T. M. & Bocquet, L. Soft matter principles of microfluidics. Soft Matter 8, 10527 (2012). 12. Bartolo, D. & Aarts, D. G. A. L. Microfluidics and soft matter: small is useful. Soft Matter (2012). doi:10.1039/c2sm26157j 13. Liao, K.-T. & Chou, C.-F. Nanoscale Molecular Traps and Dams for Ultrafast Protein Enrichment in High-Conductivity Buffers. J. Am. Chem. Soc. 134, 8742–8745 (2012). 14. Jing, W. et al. Microfluidic Device for Efficient Airborne Bacteria Capture and Enrichment. Anal. Chem. 85, 5255–5262 (2013). 15. Mao, X. & Huang, T. J. Microfluidic diagnostics for the developing world. Lab. Chip 12, 1412 (2012). 16. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006). 17. Chin, C. D., Linder, V. & Sia, S. K. Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12, 2118 (2012). 18. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000). 19. Cheng, C.-M. et al. Paper-Based ELISA. Angew. Chem. 122, 4881–4884 (2010). 20. Martinez, A. W., Phillips, S. T. & Whitesides, G. M. From the Cover: Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. 105, 19606–19611 (2008). 21. Lu, Y., Lin, B. & Qin, J. Patterned Paper as a Low-Cost, Flexible Substrate for Rapid Prototyping of PDMS Microdevices via ‘Liquid Molding’. Anal. Chem. 83, 1830–1835 (2011). 22. Iliescu, C., Taylor, H., Avram, M., Miao, J. & Franssila, S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6, 016505 (2012). 23. Duan, C., Wang, W. & Xie, Q. Review article: Fabrication of nanofluidic devices. Biomicrofluidics 7, 026501 (2013). 24. Yang, L.-J., Yao, T.-J. & Tai, Y.-C. The marching velocity of the capillary meniscus in a microchannel. J. Micromechanics Microengineering 14, 220–225 (2004). 25. Tas, N. R., Haneveld, J., Jansen, H. V., Elwenspoek, M. & van den Berg, A. Capillary filling speed of water in nanochannels. Appl. Phys. Lett. 85, 3274 (2004). 26. Thornton, C., Johnson, G. & Agrawal, S. Detection of Invasive Pulmonary Aspergillosis in Haematological Malignancy Patients by using Lateral-flow Technology. J. Vis. Exp. (2012). doi:10.3791/3721 27. Lopez_Marzo, A. M., Pons, J., Blake, D. A. & Merkoci, A. High sensitive gold-nanoparticle based lateral flow immunodevice for Cd2+ detection in drinking waters. Biosens. Bioelectron. (2013). doi:10.1016/j.bios.2013.02.031 28. Javadi, A., Habibi, M., Taheri, F. S., Moulinet, S. & Bonn, D. Effect of wetting on capillary pumping in microchannels. Sci. Reports 3, (2013). 29. Squires, T. & Quake, S. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977–1026 (2005). 30. Shadpour, H., Musyimi, H., Chen, J. & Soper, S. A. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J. Chromatogr. A 1111, 238–251 (2006). 31. Towns, J. K. & Regnier, F. E. Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis. Anal. Chem. 64, 2473–2478 (1992). 32. Ghosal, S. Effect of Analyte Adsorption on the Electroosmotic Flow in Microfluidic Channels. Anal. Chem. 74, 771–775 (2002). 33. Schrott, W. et al. Study on surface properties of PDMS microfluidic chips treated with albumin. Biomicrofluidics 3, 044101 (2009). 34. Ren, X., Bachman, M., Sims, C., Li, G. . & Allbritton, N. Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B. Biomed. Sci. App. 762, 117–125 (2001). 35. Spehar, A.-M. et al. Electrokinetic characterization of poly(dimethylsiloxane) microchannels. ELECTROPHORESIS 24, 3674–3678 (2003). 36. Luo, Y., Huang, B., Wu, H. & Zare, R. N. Controlling Electroosmotic Flow in Poly(dimethylsiloxane) Separation Channels by Means of Prepolymer Additives. Anal. Chem. 78, 4588–4592 (2006). 37. Ocvirk, G. et al. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 21, 107–115 (2000). 38. Vickers, J. A., Caulum, M. M. & Henry, C. S. Generation of Hydrophilic Poly(dimethylsiloxane) for High-Performance Microchip Electrophoresis. Anal. Chem. 78, 7446–7452 (2006). 39. Roman, G. T., Hlaus, T., Bass, K. J., Seelhammer, T. G. & Culbertson, C. T. Sol−Gel Modified Poly(dimethylsiloxane) Microfluidic Devices with High Electroosmotic Mobilities and Hydrophilic Channel Wall Characteristics. Anal. Chem. 77, 1414–1422 (2005). 40. Zhou, F., Wang, W., Wu, W.-Y., Zhang, J.-R. & Zhu, J.-J. Low electroosmotic flow measurement by tilting microchip. J. Chromatogr. A 1194, 221–224 (2008). 41. Xu, T., Fu, R. & Yan, L. A new insight into the adsorption of bovine serum albumin onto porous polyethylene membrane by zeta potential measurements, FTIR analyses, and AFM observations. J. Colloid Interface Sci. 262, 342–350 (2003). 42. Leichle, T. et al. Biosensor-compatible encapsulation for pre-functionalized nanofluidic channels using asymmetric plasma treatment. Sensors Actuators B Chem. 161, 805–810 (2012). 43. Gu, J., Gupta, R., Chou, C.-F., Wei, Q. & Zenhausern, F. A simple polysilsesquioxane sealing of nanofluidic channels below 10 nm at room temperature. Lab. Chip 7, 1198 (2007). 44. Kirby, B. Micro- and nanoscale fluid mechanics transport in microfluidic devices. (Cambridge University Press, 2010). at <http://public.eblib.com/EBLPublic/PublicView.do?ptiID=581064> 45. Schmidt, L. D. The engineering of chemical reactions. (Oxford University Press, 1998). 46. http://en.wikipedia.org/wiki/Plug_flow_reactor_model. 47. Garcia, A. L. et al. Electrokinetic molecular separation in nanoscale fluidic channels. Lab. Chip 5, 1271 (2005). 48. Huang, X., Gordon, M. J. & Zare, R. N. Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Anal. Chem. 60, 1837–1838 (1988). 38.http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidicsse65.html#x77-24200010.6 50. Pennathur, S. & Santiago, J. G. Electrokinetic Transport in Nanochannels. 2. Experiments. Anal. Chem. 77, 6782–6789 (2005). 51. Adamczyk, Z., Nattich, M., Wasilewska, M. & Zaucha, M. Colloid particle and protein deposition — Electrokinetic studies. Adv. Colloid Interface Sci. 168, 3–28 (2011). 52. Adamczyk, Z., Zaucha, M. & Zembala, M. Zeta Potential of Mica Covered by Colloid Particles: A Streaming Potential Study. Langmuir 26, 9368–9377 (2010). 53. Sadlej, K., Wajnryb, E., Bławzdziewicz, J., Ekiel-Jeżewska, M. L. & Adamczyk, Z. Streaming current and streaming potential for particle covered surfaces: Virial expansion and simulations. J. Chem. Phys. 130, 144706 (2009). 54. Tabeling, P. Introduction to microfluidics. (Oxford University Press, 2005). at <http://site.ebrary.com/id/10167535> 55. Takamura, N., Gunji, T., Hatano, H. & Abe, Y. Preparation and properties of polysilsesquioxanes: Polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane. J. Polym. Sci. Part Polym. Chem. 37, 1017–1026 (1999). 56. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010). 57. Bard, A. J. Electrochemical methods: fundamentals and applications. (Wiley, 2001). 58. Kirby, B. J. & Hasselbrink, E. F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. ELECTROPHORESIS 25, 187–202 (2004). 59. Bohme, U. & Scheler, U. Effective charge of bovine serum albumin determined by electrophoresis NMR. Chem. Phys. Lett. 435, 342–345 (2007). 60. Schoch, R. B., van Lintel, H. & Renaud, P. Effect of the surface charge on ion transport through nanoslits. Phys. Fluids 17, 100604 (2005). 61. Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921 (1991). 62. Jacobs, H. O., Leuchtmann, P., Homan, O. J. & Stemmer, A. Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 84, 1168 (1998). 63. Bhushan, B. & Goldade, A. V. Kelvin probe microscopy measurements of surface potential change under wear at low loads. Wear 244, 104–117 (2000). 64. Fujihira, M. KELVIN PROBE FORCE MICROSCOPY OF MOLECULAR SURFACES. Annu. Rev. Mater. Sci. 29, 353–380 (1999). 65. Lee, I., Chung, E., Kweon, H., Yiacoumi, S. & Tsouris, C. Scanning surface potential microscopy of spore adhesion on surfaces. Colloids Surf. B Biointerfaces 92, 271–276 (2012). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58987 | - |
| dc.description.abstract | 電驅動奈米流道已經被廣泛的利用在許多生化分析的系統上,尤其在尺度更微小、因而較難以控制的蛋白質分析上。雖然人們對蛋白質本身的生化結構已有深入的認知,然而許多蛋白質如何在奈米流道的行為仍是未知,例如,蛋白質如何吸附道流道表面上,和蛋白質如何影響流道的電滲流(electro-osmotic flow)傳輸。這份研究利用電流監控法(current-monitoring method)來量測奈米微流道(高度約500奈米)中電滲流移動率(electro-osmotic mobility)在不同濃度的牛血清白蛋白(bovine serum albumin: BSA)下的表現。我們發現電滲流移動率會隨著蛋白質濃度的增加而下降,此下降趨勢並非無限制延伸到零,而是達到一個飽和值。藉由和隨機序列吸附模型(random-sequential-adsorption model)的指數函數比對下,可以得到造成移動率變化的特徵濃度為1.4±0.3mg/ml,而移動率的飽和值為1.3±0.1 cm*um/V s. | zh_TW |
| dc.description.abstract | Electrokinetically-driven nanofluidics has been widely used in micro-total-analysis system (μTAS), especially for proteomic analysis. However, many details in how proteins were absorbed onto the surface and perturbed the electro-osmotic flow (EOF) are still elusive. In this study, we investigated the reliability of current-monitoring method by reproducing the results under different conditions, and used this method to measure electro-osmotic mobility under different concentration of bovine serum albumin (BSA) in nano-slits (channel height ~ 500nm). We observed that EOF mobility would be reduced as BSA concentration increases, and reach a saturation level at high BSA concentration. By fitting with exponential decay from random-sequential-adsorption model suggested by Adamczyk et al1,2, two relevant parameters were found: characteristic perturbing concentration is 1.4±0.3 mg/ml and mobility at high concentration is 1.3±0.1 um*cm/V s. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:42:54Z (GMT). No. of bitstreams: 1 ntu-102-R00245015-1.pdf: 4141721 bytes, checksum: e43d1010e55a46bd29f0a079f34b9190 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 11
1.1 Miniaturized fluidics for micro analysis 11 1.2 Fluid transport in micro/nano-channels 13 1.3 Why understand protein adsorption in microfluidics? 17 Chapter 2 Theory of electrokinetics in nanoslits 21 2.1 Electrical double layer-the Debye length 21 2.2 Current-monitoring method 23 2.3 The concentration-dependent zeta potential: Exponential decay from random-sequential-adsorption (RSA) model 25 Chapter 3 Experimental materials and method: 27 3.1 Sample preparation 27 3.2 Device fabrication: 27 3.2.1 Photolithography 27 3.2.2 Loading holes 28 3.2.3 PSQ bonding process 29 3.3 Experimental setup for the current-monitoring methods 30 3.4 Data analysis 31 Chapter 4 Results and discussions 33 4.1 Basic calibrations: Multi-meter and electrode polarization 33 4.2 Reliability test of current-monitoring method 34 4.2.1 Reproducibility with fresh solution in used channels 34 4.2.2 Reproducibility with fresh solution and new channels 35 4.2.3 Reproducibility with the same solution by switching electric field 36 4.3 Effect of ionic concentration on EOF mobility 38 4.4 Effect of protein adsorption on EOF mobility 39 4.4.1 Screening effect of surface charge due to adsorbed proteins 39 4.4.2 Dependence of EOF mobility on profiles of adsorbed proteins: side-on or aggregate manners 44 Chapter 5 Conclusion and future perspective 46 References 48 | |
| dc.language.iso | en | |
| dc.subject | 微流體 | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 電滲流 | zh_TW |
| dc.subject | 牛血清蛋白 | zh_TW |
| dc.subject | electroosmosis | en |
| dc.subject | microfluidics | en |
| dc.subject | biosensor | en |
| dc.subject | bovine serum albumin | en |
| dc.title | 探討在奈米微流道中蛋白質吸附對電滲流的影響 | zh_TW |
| dc.title | Effect of protein adsorption on electro-osmotic flow in nano-slits | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周家復(Chia Fu Chou) | |
| dc.contributor.oralexamcommittee | 趙玲(Ling Chao) | |
| dc.subject.keyword | 微流體,生物感測器,電滲流,牛血清蛋白, | zh_TW |
| dc.subject.keyword | microfluidics,biosensor,electroosmosis,bovine serum albumin, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
