Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58986
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorYen-Kai Huangen
dc.contributor.author黃彥凱zh_TW
dc.date.accessioned2021-06-16T08:42:50Z-
dc.date.available2013-09-02
dc.date.copyright2013-09-02
dc.date.issued2013
dc.date.submitted2013-08-28
dc.identifier.citation1. Bernhardt P, Wilke HJ, Wenger KH, et al. Multiple muscle force simulation in axial rotation of the cervical spine. Clin Biomech 1999;14:32-40.
2. Busscher I, Ploegmakers JJ, Verkerke GJ, et al. Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 2010;19:1104-14.
3. Cheng CH, Chen PJ, Kuo YW, et al. The effects of disc degeneration and muscle dysfunction on cervical spine stability from a biomechanical study. Proc Inst Mech Eng H 2011;225:149-57.
4. Chiba K, Ogawa Y, Ishii K, et al. Long-term results of expansive open-door laminoplasty for cervical myelopathy--average 14-year follow-up study. Spine 1976;31:2998-3005.
5. Deng YC, Goldsmith W. Response of a human head/neck/upper-torso replica to dynamic loading--II. Analytical/numerical model. J Biomech 1987;20:487-97.
6. Essendrop M Fau - Andersen TB, Andersen Tb Fau - Schibye B, B S. - Increase in spinal stability obtained at levels of intra-abdominal pressure and back muscle activity realistic to work situations. Appl Ergon 2002;33:471-6.
7. Fujibayashi S, Neo M, Yoshida M, et al. Neck muscle strength before and after cervical laminoplasty: relation to axial symptoms. J Spinal Disord Tech 2010;23:197-202.
8. Fujimura Y, Nishi Y. Atrophy of the nuchal muscle and change in cervical curvature after expansive open-door laminoplasty. Arch Orthop Trauma Surg 1996;115:203-5.
9. GORE DR, SEPIC SB, GARDNER GM. Roentgenographic findings of the cervical spine in asymptomatic people. Spine 1986;11:521.
10. Herkowitz HN. Cervical laminaplasty: its role in the treatment of cervical radiculopathy. J Spinal Disord 1988;1:179-88.
11. Herkowitz HN. A comparison of anterior cervical fusion, cervical laminectomy, and cervical laminoplasty for the surgical management of multiple level spondylotic radiculopathy. Spine 1976;13:774-80.
12. Hides JA, Richardson CA, Jull GA. Multifidus muscle recovery is not automatic after resolution of acute, first-episode low back pain. Spine 1996;21:2763-9.
13. Hirabayashi K, Miyakawa J, Satomi K, et al. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine 1976;6:354-64.
14. Hirabayashi K, Satomi K. Operative procedure and results of expansive open-door laminoplasty. Spine 1976;13:870-6.
15. Hirabayashi K, Watanabe K, Wakano K, et al. Expansive open-door laminoplasty for cervical spinal stenotic myelopathy. Spine 1983;8:693.
16. Hirabayashi K, Watanabe K, Wakano K, et al. Expansive open-door laminoplasty for cervical spinal stenotic myelopathy. Spine 1976;8:693-9.
17. Hosono N, Sakaura H, Mukai Y, et al. En bloc laminoplasty without dissection of paraspinal muscles. J Neurosurg Spine 2005;3:29-33.
18. Hosono N, Yonenobu K, Ono K. Neck and shoulder pain after laminoplasty. A noticeable complication. Spine 1976;21:1969-73.
19. Houten JK, Cooper PR. Laminectomy and posterior cervical plating for multilevel cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament: effects on cervical alignment, spinal cord compression, and neurological outcome. Neurosurgery 2003;52:1081-7.
20. Hyun SJ, Riew KD, Rhim SC. Range of motion loss after cervical laminoplasty: a prospective study with minimum 5-year follow-up data. Spine J 2013;13:384-90.
21. Jayson MI. The lumbar spine and back pained: Churchill Livingstone, 1987.
22. Kato Y, Iwasaki M, Fuji T, et al. Long-term follow-up results of laminectomy for cervical myelopathy caused by ossification of the posterior longitudinal ligament. J Neurosurg 1998;89:217-23.
23. Kawaguchi Y, Kanamori M, Ishihara H, et al. Minimum 10-year followup after en bloc cervical laminoplasty. Clin Orthop Relat Res 2003;411:129-39.
24. Kettler A, Hartwig E, Schultheiss M, et al. Mechanically simulated muscle forces strongly stabilize intact and injured upper cervical spine specimens. J Biomech 2002;35:339-46.
25. Kimura I, Shingu H, Nasu Y. Long-term follow-up of cervical spondylotic myelopathy treated by canal-expansive laminoplasty. J Bone Joint Surg Br 1995;77:956-61.
26. Kolstad F, Nygaard OP, Andresen H, et al. Anterior cervical arthrodesis using a 'stand alone' cylindrical titanium cage: prospective analysis of radiographic parameters. Spine 1976;35:1545-50.
27. Kotani Y, Abumi K, Ito M, et al. Minimum 2-year outcome of cervical laminoplasty with deep extensor muscle-preserving approach: impact on cervical spine function and quality of life. Eur Spine J 2009;18:663-71.
28. Kuntz Ct, Levin LS, Ondra SL, et al. Neutral upright sagittal spinal alignment from the occiput to the pelvis in asymptomatic adults: a review and resynthesis of the literature. J Neurosurg Spine 2007;6:104-12.
29. Lee PJ, Rogers EL, Granata KP. Active trunk stiffness increases with co-contraction. J Electromyogr Kinesiol 2006;16:51-7.
30. Lee SH, Ahn Y, Lee JH. Laser-assisted anterior cervical corpectomy versus posterior laminoplasty for cervical myelopathic patients with multilevel ossification of the posterior longitudinal ligament. Photomed Laser Surg 2008;26:119-27.
31. Lin HL, Cho DY, Liu YF, et al. Change of cervical balance following single to multi-level interbody fusion with cage. Br J Neurosurg 2008;22:758-63.
32. Matsunaga S, Sakou T, Hayashi K, et al. Trauma-induced myelopathy in patients with ossification of the posterior longitudinal ligament. J Neurosurg 2002;97:172-5.
33. Matsuzaki H, Hoshino M, Kiuchi T, et al. Dome-like expansive laminoplasty for the second cervical vertebra. Spine 1976;14:1198-203.
34. Merrill T, Goldsmith W, Deng YC. Three-dimensional response of a lumped parameter head-neck model due to impact and impulsive loading. J Biomech 1984;17:81-95.
35. Miyazaki K, Kirita Y. Extensive simultaneous multisegment laminectomy for myelopathy due to the ossification of the posterior longitudinal ligament in the cervical region. Spine 1976;11:531-42.
36. Morimoto T, Matsuyama T, Hirabayashi H, et al. Expansive laminoplasty for multilevel cervical OPLL. J Spinal Disord 1997;10:296-8.
37. Moroney SP, Schultz AB, Miller JA. Analysis and measurement of neck loads. J Orthop Res 1988;6:713-20.
38. Nakama S, Nitanai K, Oohashi Y, et al. Cervical muscle strength after laminoplasty. J Orthop Sci 2003;8:36-40.
39. Niu CC, Liao JC, Chen WJ, et al. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spinal Disord Tech 2010;23:310-6.
40. Nojiri K, Matsumoto M, Chiba K, et al. Relationship between alignment of upper and lower cervical spine in asymptomatic individuals. J Neurosurg 2003;99:80-3.
41. O'Brien MF, Peterson D, Casey AT, et al. A novel technique for laminoplasty augmentation of spinal canal area using titanium miniplate stabilization. A computerized morphometric analysis. Spine 1976;21:474-83.
42. Ogawa Y, Chiba K, Matsumoto M, et al. Long-term results after expansive open-door laminoplasty for the segmental-type of ossification of the posterior longitudinal ligament of the cervical spine: a comparison with nonsegmental-type lesions. J Neurosurg Spine 2005;3:198-204.
43. Okada E, Matsumoto M, Ichihara D, et al. Aging of the cervical spine in healthy volunteers: a 10-year longitudinal magnetic resonance imaging study. Spine 1976;34:706-12.
44. Panjabi M, Abumi K, Duranceau J, et al. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine 1976;14:194-200.
45. Panjabi MM. Clinical spinal instability and low back pain. Journal of electromyography and kinesiology 2003;13:371-80.
46. Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord 1992;5:383-9.
47. Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord 1992;5:390-6.
48. Panjabi MM, Brand RA, Jr., White AA, 3rd. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg Am 1976;58:642-52.
49. Panjabi MM, Cholewicki J, Nibu K, et al. Critical load of the human cervical spine: an in vitro experimental study. Clin Biomech 1998;13:11-7.
50. Panjabi MM, Duranceau JS, Oxland TR, et al. Multidirectional instabilities of traumatic cervical spine injuries in a porcine model. Spine 1976;14:1111-5.
51. Park JY, Kim KH, Kuh SU, et al. What are the associative factors of adjacent segment degeneration after anterior cervical spine surgery? Comparative study between anterior cervical fusion and arthroplasty with 5-year follow-up MRI and CT. Eur Spine J 2013;22:1078-89.
52. Radcliff K, Rubin T, Reitman CA, et al. Normal Cervical Alignment. Seminars in Spine Surgery: Elsevier, 2011:159-64.
53. Ratliff JK, Cooper PR. Cervical laminoplasty: a critical review. J Neurosurg 2003;98:230-8.
54. Richter M, Wilke HJ, Kluger P, et al. Load-displacement properties of the normal and injured lower cervical spine in vitro. Eur Spine J 2000;9:104-8.
55. Sakaura H, Hosono N, Mukai Y, et al. Medium-term outcomes of C3-6 laminoplasty for cervical myelopathy: a prospective study with a minimum 5-year follow-up. Eur Spine J 2011;20:928-33.
56. Sani S, Ratliff JK, Cooper PR. A critical review of cervical laminoplasty. Neurosurgery Quarterly 2004;14:5-16.
57. Satomi K, Nishu Y, Kohno T, et al. Long-term follow-up studies of open-door expansive laminoplasty for cervical stenotic myelopathy. Spine 1976;19:507-10.
58. Seichi A, Takeshita K, Ohishi I, et al. Long-term results of double-door laminoplasty for cervical stenotic myelopathy. Spine 1976;26:479-87.
59. Shaffrey CI, Wiggins GC, Piccirilli CB, et al. Modified open-door laminoplasty for treatment of neurological deficits in younger patients with congenital spinal stenosis: analysis of clinical and radiographic data. J Neurosurg 1999;90:170-7.
60. Shiraishi T, Fukuda K, Yato Y, et al. Results of skip laminectomy-minimum 2-year follow-up study compared with open-door laminoplasty. Spine 1976;28:2667-72.
61. Snijders CJ, Hoek van Dijke GA, Roosch ER. A biomechanical model for the analysis of the cervical spine in static postures. J Biomech 1991;24:783-92.
62. Toosizadeh N, Haghpanahi M. Generating a finite element model of the cervical spine: Estimating muscle forces and internal loads. Scientia Iranica 2011;18:1237-45.
63. Tsuzuki N, Abe R, Saiki K, et al. Tension-band laminoplasty of the cervical spine. Int Orthop 1996;20:275-84.
64. van Dieen JH, Cholewicki J, Radebold A. Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine 1976;28:834-41.
65. Wada E, Suzuki S, Kanazawa A, et al. Subtotal corpectomy versus laminoplasty for multilevel cervical spondylotic myelopathy: a long-term follow-up study over 10 years. Spine 1976;26:1443-7.
66. Wen N, Lavaste F, Santin JJ, et al. Three-dimensional biomechanical properties of the human cervical spine in vitro. I. Analysis of normal motion. Eur Spine J 1993;2:2-11.
67. White AA, 3rd, Panjabi MM. Biomechanical considerations in the surgical management of cervical spondylotic myelopathy. Spine 1976;13:856-60.
68. White AA, Panjabi MM. Clinical biomechanics of the spineed: Lippincott Philadelphia, 1990.
69. Wilke HJ, Claes L, Schmitt H, et al. A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 1994;3:91-7.
70. Wilke HJ, Wolf S, Claes LE, et al. Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 1976;20:192-8.
71. Woods BI, Hohl J, Lee J, et al. Laminoplasty versus laminectomy and fusion for multilevel cervical spondylotic myelopathy. Clin Orthop Relat Res 2011;469:688-95.
72. Yamagata T, Takami T, Uda T, et al. Outcomes of contemporary use of rectangular titanium stand-alone cages in anterior cervical discectomy and fusion: cage subsidence and cervical alignment. J Clin Neurosci 2012;19:1673-8.
73. Yonenobu K, Nakamura K, Toyama Y. OPLL: ossification of the posterior longitudinal ligamented: Springer, 2006.
74. Yoshida M, Otani K, Shibasaki K, et al. Expansive laminoplasty with reattachment of spinous process and extensor musculature for cervical myelopathy. Spine 1976;17:491-7.
75. Yukawa Y, Kato F, Suda K, et al. Age-related changes in osseous anatomy, alignment, and range of motion of the cervical spine. Part I: Radiographic data from over 1,200 asymptomatic subjects. Eur Spine J 2012;21:1492-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58986-
dc.description.abstract簡介: 頸椎脊髓神經病變(Cervical radiculomyelopathy)可進一步細分為脊髓型頸椎病變(Myelopathy)及脊髓脊神經根病變(Radiculomyelopathy)。脊髓型頸椎病變的原因主要為椎管狹窄(Spinal stenosis),脊髓脊神經根病病變的原因主要為椎間孔狹窄(Foraminal stenosis)。發生椎管狹窄的原因有骨刺增生、後縱韌帶鈣化(Ossification of Posterior Longitudinal Ligament, OPLL)等等,而發生椎間孔狹窄的原因有脊椎退化、椎間盤突出等。此類病變通常開始為保守治療,例如牽引(Traction)、熱/冷敷、電療等等,如果保守治療無效時,就會採取手術方法。手術方式分為前路減壓及後路減壓兩種,前路減壓手術常見的有前側椎體切除術(Anterior Cervical Discectomy and Fusion, ACDF)與前側椎間盤切除與融合術(Anterior Cervical Corpectomy with Fusion, ACCF);後路減壓手術常見的有椎板切除術(Laminectomy)與椎板整形術(Laminoplasty)。後路減壓的椎板整形術為常用於治療椎管狹窄的手術,其術後臨床效果良好,但由於手術時會將後側的肌肉剝離,臨床觀察指出深層肌於術後有逐漸萎縮的現象,併發症為頸椎自然曲度(Alignment)喪失、活動度(Range of motion, ROM)下降及軸向痛(Axial pain)等。
目的: 椎板整形術後,後側深層肌會有萎縮現象,造成肌肉功能缺損(Muscle dysfunction)。有關於深層肌功能缺損對於頸椎穩定度與曲度變化的研究較少,因此本研究的目的為探討頸椎深層肌功能缺損對於椎板整形術後,頸椎穩定度及曲度變化之影響。本研究結果可評估術後病人是否要接受進一步的物理治療以減緩後側深層肌功能缺損。
材料與方法: 本實驗使用離體動物(In vitro animal model)測試,使用八副豬頸椎C2~C7節進行體外肌肉模擬生物力學測試。使用細繩、滑輪及砝碼模擬肌肉走向及力量。實驗方法總共分為兩大部分,第一部先驗證完整的頸椎在有或無肌肉模擬時的活動度與穩定度,並與過去文獻比較,以及各別肌肉功能缺損時對曲度及穩定度的影響。第二部分為建置後縱韌帶鈣化術前以及椎板整形術後生物力學模型,後縱韌帶鈣化模型主要是利用優力膠塞入椎孔模擬臨床時活動度下降及曲度朝後凸(Kyphosis)的變化。椎板整形術則是將後側椎板扳開後,以骨板及撐開器固定,並模擬後側深層肌力量減小,探討術後深層肌在不同功能缺損程度時對曲度變化、活動度及穩定度的影響。
結果: 第一部分結果顯示加上肌肉後,活動度與中性區(Neutral zone, NZ)與先前未加肌肉時的研究相比,在活動度與中性區都有下降的趨勢,且中性區較活動度下降幅度多,證明此體外肌肉模擬機台的確能模擬頸部肌肉功能。肌肉功能缺損後,斜方肌及深層肌對頸椎整體曲度與穩定度影響最大(包含了活動度上升、曲度後凸增加及中性區上升)。在第二部分的實驗,發現在後縱韌帶鈣化後,活動度比健康時下降約40%,曲度後凸增加,與臨床觀察一致。在椎板整形術後之深層肌功能缺損探討方面,手術節數為三節(C4/6)或四節(C3/6)時,其相互間的結果差異不大。就曲度而言,隨著深層肌功能變差,曲度有後凸增加的趨勢,頸椎變得更直。當深層肌功能維持在50%時,在曲度變化上與後縱韌帶鈣化組並無顯著差異,當深層肌功能維持70%時,在曲度變化上與後縱韌帶鈣化組有顯著差異,代表更能夠維持頸椎自然曲度。就活動度而言,隨著深層肌功能變差,活動度逐漸上升,當深層肌功能維持30%時與後縱韌帶鈣化組顯著上升,當深層肌功能維持50%及70%時,在活動度方面與後縱韌帶鈣化組無顯著差異。就中性區而言,深層肌功能缺損變差,中性區逐漸上升,代表穩定度下降。當深層肌功能維持50%與70%時,中性區方面與健康組(加上肌肉)及後縱韌帶鈣化組無顯著差異。
結論: 本研究目的在探討椎板整形術後深層肌功能缺損對頸椎生物力學影響。在曲度方面,我們發現當深層肌肌肉功能維持至少50%時,可使頸椎曲度維持在術前的狀態,當維持70%時可以改善頸椎的曲度,雖然無法回到正常時頸椎的自然曲度,但是相較於術前已有改善。穩定度方面,當深層肌功能維持至少50%時,可使穩定度回復至健康時狀態。因此建議病患在椎板整形術後須接受進一步的物理治療,以減緩後側深層肌功能缺損對頸椎穩定度及曲度產生影響。
zh_TW
dc.description.abstractBackground. Cervical radiculomyelopathy can be subdivided into myelopathy and radiculopathy. The main cause of myelopathy is spinal stenosis due to the formation of bone spurs, ossification of posterior longitudinal ligament (OPLL) and other degenerative changes of the spinal column. Radiculopathy on the other hand is mainly due to foraminal stenosis related to spondylosis and disc herniations. Although conservative treatments such as traction, hot/cold compress, electrotherapies are firstly prescribed, surgical intervention is often indicated. Surgery is categorically divided into either as anterior or posterior approach. Anterior approach includes anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy with fusion (ACCF). Laminectomy and laminoplasty are the most common posterior decompression surgeries. However, owing to the intraoperative procedure of the laminoplasty, the dissection of the extensor muscles will results in the muscle atrophy. The clinical complications associated with muscle atrophy include the loss of cervical lordosis, decreasing the range of motion (ROM), and increased axial spinal pain.
Purpose. Patients usually suffer atrophy of extensor deep muscles causing muscle dysfunction after laminoplasty. However, limited research focused on the impact of deep muscle dysfunctions on cervical alignment change and the cervical stability, respectively. A better understanding of the relationship will allow further inferences made on the importance of physical therapy treatments on post-operative muscle dysfunction.
Material and Methods. The in-vitro model system was constructed from eight porcine cadaveric cervical spines (C2-C7) to simulate the biomechanical testing of human cervical muscles. Cables, pulleys, and weights were used to simulate the direction and force of the muscles. This study is divided into two sections: first, the ROM and stability of the constructed cervical model were measured in the presence and absence of muscles in order to compare the results with other published work. Once the applicability of the constructed model has been established, individual muscle dysfunction will be simulated to better understand the corresponding effect on the overall stability of the cervical spine. The second part of the study involved the simulation of an OPLL model and subsequently followed with simulated laminoplasty. To achieve the simulation of OPLL, a polyurethane tube was inserted into the spinal cord space to replicate the increase in the stiffness and kyphosis of the spinal column observed in OPLL patients. Once the biomechanical properties of the simulated OPLL model has been documented, a simulated laminoplasty involving cutting, splitting and fixing of lamina by plate and spacer was carried out. The aim of this part of the study is to better understand the impact of surgical intervention on the superficial and deep muscles of the neck, as well as the associated cervical alignment, ROM and stability change.
Results. For the first part of the study, it was found that the ROM and neutral zone (NZ) decreased significantly for all of the muscles were intact in comparison to the one without muscles attachment. Furthermore, the normalised ratio of NZ was found to reach greater decrease than the ROM. Such finding is consistent with published data and validated the applicability of the simulated spine model. In terms of the impact of the individual muscles, it was found that the trapezius and the deep muscles showed the greatest effect on the ROM and stability, i.e. removal of these muscles were associated with the greatest increase in ROM and NZ. For the simulation of the OPLL model, it was found that the ROM decreased by 40% with a change of alignment into kyphosis. After the laminoplasty simulation procedure, a trend of gradual decrease of the cervical lordosis with the decrease of muscle function was observed. When the muscle was at 30% of original muscle function, the cervical lordosis significantly decreased when compared to both the intact and the OPLL group. In contrast, at 70% of original muscle function, the lordotic angle significantly increased when compared with the OPLL group, however, it was found to be still significantly less than the intact group. For the neutral zone results, no significant difference was found between the different muscle function levels and the intact group, however, a significant difference was found between the 30% muscle function group and the OPLL group where the NZ increased significantly in the 30% muscle function group.
Conclusion. This study focused mainly on the biomechanical impacts of cervical muscle dysfunctions after laminoplasty. In terms of the alignment change, at least 50% deep muscle function was required to achieve the same alignment status as pre-laminoplasty in the OPLL state, and 70% of original deep muscle function was required to improve the cervical alignment to be better than the pre-operative state. It was noted that even with the 70% muscle function, the cervical alignment failed to return to its healthy state levels. In summary, identified decrease of cervical lordosis and the high levels of muscle function required to re-gain cervical alignment after laminoplasty highlights the importance of early and specific deep muscle retraining post-operatively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:42:50Z (GMT). No. of bitstreams: 1
ntu-102-R00548032-1.pdf: 3436263 bytes, checksum: 17a3be56c98eb397141c4bc77293c0b2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
中文摘要 V
Abstract VII
目錄 X
圖目錄 XIV
表目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 頸椎基本構造 3
1.3 頸部肌肉概述 5
1.3.1 胸鎖乳突肌(Sternocleidomastoid, SCM) 5
1.3.2 斜角肌(Scalene) 6
1.3.3 斜方肌(Trapezius) 6
1.3.4 夾肌(Splenius capitis, SPL) 7
1.3.5 半棘肌(Semispinalis capitis, SSC) 8
1.3.6 多裂肌(Multifidus)與項半棘肌(Semispinalis cervicis) 8
1.4 肌肉對於脊椎穩定度的影響 9
1.5 頸椎脊髓神經病變(cervical radiculomyelopathy) 11
1.5.1 脊髓型頸椎病(Cervical spondylotic myelopathy, CSM) 11
1.5.2 後縱韌帶鈣化(Ossification of the posterior longitudinal ligament, OPLL) 12
1.6 手術方式 14
1.6.1 前路減壓手術 14
1.6.2 後路減壓手術 15
1.7 椎板整形術臨床結果與併發症 18
1.7.1 神經系統(Neurologic) 18
1.7.2 頸部軸向痛(Axial neck pain) 18
1.7.3 活動度(Range of motion, ROM) 19
1.7.4 頸椎曲度(Cervical alignment) 20
1.7.5 肌肉萎縮(Atrophy)與肌肉力量 20
1.8 實驗動機與假說 22
1.9 體外脊椎肌肉模擬 22
1.10 研究目的 23
第二章 材料與方法 24
2.1試樣處理 24
2.2實驗設備 25
2.2.1肌肉模擬測試機台 25
2.2.2 Hybrid力學測試機台 27
2.2.3醫用電動圓磨鑽 29
2.2.4植入物器械 29
2.3實驗流程 30
2.4量測參數 33
2.4.1曲度(Alignment) 33
2.4.2活動度(ROM) 35
2.4.3中性區(NZ) 36
2.5統計方法 37
第三章 結果 38
3.1 Intact、Intact+muscle及各條肌肉失去功能 38
3.1.1曲度變化量(Alignment change) 38
3.1.2活動度(Range of motion, ROM) 40
3.1.2.1總活動度(Flexion+Extension) 40
3.1.2.2前彎活動度(Flexion ) 41
3.1.2.3後仰活動度(Extension ) 42
3.1.2.4前彎各節活動度 43
3.1.2.5後仰各節活動度 44
3.1.3中性區 45
3.2模擬後縱韌帶鈣化、術後深層肌功能缺損 46
3.2.1曲度變化量(Alignment change) 46
3.2.2總活動度 48
3.2.2.1總活動度(Flexion +Extension) 48
3.2.2.2前彎活動度(Flexion ) 49
3.2.2.3後仰活動度(Extension ) 50
3.2.2.4前彎各節活動度 51
3.2.2.5後仰各節活動度 52
3.2.3中性區 54
第四章 討論 55
4.1體外肌肉模擬測試機台與肌肉缺損探討 55
4.1.1曲度變化 57
4.1.2活動度 57
4.1.2.1前彎及後仰活動度 57
4.1.2.2前彎及後仰各節活動度 57
4.1.3中性區 58
4.2後縱韌帶鈣化模型 58
4.2.1曲度變化 58
4.2.2活動度 58
4.2.3中性區 59
4.3椎板整形術後模型-深層肌功能缺損 60
4.3.1曲度變化 60
4.3.2活動度 61
4.3.3中性區 62
第五章 結論 63
5.1結論 63
5.2實驗限制與未來展望 63
參考文獻 64
dc.language.isozh-TW
dc.title探討頸椎深層肌力量對於椎板整形術後頸椎穩定度之影響-體外頸椎肌肉模型zh_TW
dc.titleThe Effect of Deep Muscle Force Change on the Cervical Stability after Laminoplasty - In Vitro Neck Model with Muscle Force Simulationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴達明,王淑芬,楊世偉,鄭智修
dc.subject.keyword椎板整形術,頸椎深層肌,肌肉功能缺損,體外肌肉模型,生物力學,zh_TW
dc.subject.keywordlaminoplasty,cervical deep muscle,muscle dysfunction,In vitro model with muscle simulation,biomechanics,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2013-08-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved