Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58942
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真(Yu-Jane Sheng)
dc.contributor.authorYung-Lung Linen
dc.contributor.author林永隆zh_TW
dc.date.accessioned2021-06-16T08:40:08Z-
dc.date.available2016-06-30
dc.date.copyright2013-10-23
dc.date.issued2013
dc.date.submitted2013-09-26
dc.identifier.citationAhmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M. L.; Minko, T.; Discher, D. E. Mol. Pharm. 2006, 3, (3), 340-350.
Christian, D. A.; Cai, S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Discher, D. E. Eur. J. Pharm. Biopharm. 2009, 71, (3), 463-474.
Brinkhuis, R. P.; Rutjes, F.; van Hest, J. C. M. Polym. Chem. 2011, 2, (7), 1449-1462.
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Accounts Chem. Res. 2011, 44, (10), 1039-1049.
Langer, R. Science 1990, 249, (4976), 1527-1533.
Levine, D. H.; Ghoroghchian, P. P.; Freudenberg, J.; Zhang, G.; Therien, M. J.; Greene, M. I.; Hammer, D. A.; Murali, R. Methods 2008, 46, (1), 25-32.
Chen, Q.; Schonherr, H.; Vancso, G. J. Small 2009, 5, (12), 1436-1445.
Liu, G. Y.; Liu, X. S.; Wang, S. S.; Chen, C. J.; Ji, J. Langmuir 2012, 28, (1), 557-562.
Malinova, V.; Belegrinou, S.; Ouboter, D. D.; Meier, W. P., Biomimetic Block Copolymer Membranes. In Polymer Membranes/Biomembranes, Meier, W. P.; Knoll, W., Eds. Springer-Verlag Berlin: Berlin, 2010, (224), 113-165.
Zhang, X. Y.; Tanner, P.; Graff, A.; Palivan, C. G.; Meier, W. J. Polym. Sci. Pol. Chem. 2012, 50, (12), 2293-2318.
Xiao, M. Y.; Liu, J. N.; Yang, J. X.; Wang, R.; Xie, D. Q. Soft Matter 2013, 9, (8), 2434-2442.
Hamley, I. W. Soft Matter 2005, 1, (1), 36-43.
Rodriguez-Garcia, R.; Mell, M.; Lopez-Montero, I.; Netzel, J.; Hellweg, T.; Monroy, F. Soft Matter 2011, 7, (4), 1532-1542.
del Barrio, J.; Oriol, L.; Sanchez, C.; Serrano, J. L.; Di Cicco, A.; Keller, P.; Li, M. H. J. Am. Chem. Soc. 2010, 132, (11), 3762-3769.
Amstad, E.; Kim, S. H.; Weitz, D. A. Angew. Chem.-Int. Edit. 2012, 51, (50), 12499-12503.
Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. J. Phys. Chem. B 2007, 111, (6), 1262-1270.
Pietsch, C.; Mansfeld, U.; Guerrero-Sanchez, C.; Hoeppener, S.; Vollrath, A.; Wagner, M.; Hoogenboom, R.; Saubern, S.; Thang, S. H.; Becer, C. R.; Chiefari, J.; Schubert, U. S. Macromolecules 2012, 45, (23), 9292-9302.
Pearson, R. T.; Warren, N. J.; Lewis, A. L.; Armes, S. P.; Battaglia, G. Macromolecules 2013, 46, (4), 1400-1407.
Cabane, E.; Zhang, X. Y.; Langowska, K.; Palivan, C. G.; Meier, W. Biointerphases 2012, 7, (1-4).
Zhang, L. F.; Eisenberg, A. Science 1995, 268, (5218), 1728-1731.
Zhang, L. F.; Yu, K.; Eisenberg, A. Science 1996, 272, (5269), 1777-1779.
Discher, D. E.; Eisenberg, A. Science 2002, 297, (5583), 967-973.
Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Science 1997, 276, (5311), 384-389.
Jenekhe, S. A.; Chen, X. L. Science 1998, 279, (5358), 1903-1907.
Jenekhe, S. A.; Chen, X. L. Science 1999, 283, (5400), 372-375.
Vanhest, J. C. M.; Delnoye, D. A. P.; Baars, M.; Vangenderen, M. H. P.; Meijer, E. W. Science 1995, 268, (5217), 1592-1595.
Zhou, S. Q.; Burger, C.; Chu, B.; Sawamura, M.; Nagahama, N.; Toganoh, M.; Hackler, U. E.; Isobe, H.; Nakamura, E. Science 2001, 291, (5510), 1944-1947.
Forster, S.; Borchert, K., Polymer Vesicles. In Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.: 2002.
Israelachvili, J. N. Chemica Scripta 1985, 25, (1), 7-14.
Israelachvili, J. N.; Sornette, D. Journal De Physique 1985, 46, (12), 2125-2136.
Monduzzi, M. Current Opinion in Colloid & Interface Science 1998, 3, (5), 467-477.
Choucair, A.; Eisenberg, A. European Physical Journal E 2003, 10, (1), 37-44.
Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem.-Int. Edit. 2003, 42, (7), 772-776.
Kim, B. S.; Hong, D. J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, (46), 16333-16337.
Kim, B. S.; Yang, W. Y.; Ryu, J. H.; Yoo, Y. S.; Lee, M. Chem. Commun. 2005, (15), 2035-2037.
Chang, W. H.; Chou, S. H.; Lin, J. J.; Chen, W. C.; Sheng, Y. J. J. Chem. Phys. 2010, 132, (21).
Agut, W.; Taton, D.; Brulet, A.; Sandre, O.; Lecommandoux, S. Soft Matter 2011, 7, (20), 9744-9750.
Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.-Int. Edit. 1998, 37, (4), 402-428.
Zhang, X. J.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 1999, 32, (22), 7422-7429.
Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Jenekhe, S. A.; Stolka, M. Synthetic Metals 1994, 62, (3), 265-271.
Hadziioannou, G. Abstracts of Papers of the American Chemical Society 2008, 236.
Osaheni, J. A.; Jenekhe, S. A.; Perlstein, J. Journal of Physical Chemistry 1994, 98, (48), 12727-12736.
Tessler, N.; Denton, G. J.; Friend, R. H. Nature 1996, 382, (6593), 695-697.
Yang, C. J.; Jenekhe, S. A.; Meth, J. S.; Vanherzeele, H. Industrial & Engineering Chemistry Research 1999, 38, (5), 1759-1774.
Dong, H. L.; Li, H. X.; Wang, E. J.; Nakashima, H.; Torimitsu, K.; Hu, W. P. Journal of Physical Chemistry C 2008, 112, (49), 19690-19693.
Chiu, Y. C.; Kuo, C. C.; Lin, C. J.; Chen, W. C. Soft Matter 2011, 7, (19), 9350-9358.
Chen, X. L.; Jenekhe, S. A. Macromolecules 2000, 33, (13), 4610-4612.
Lim, Y. B.; Moon, K. S.; Lee, M. Journal of Materials Chemistry 2008, 18, (25), 2909-2918.
Kuiper, S. M.; Nallani, M.; Vriezema, D. M.; Cornelissen, J.; van Hest, J. C. M.; Nolte, R. J. M.; Rowan, A. E. Organic & Biomolecular Chemistry 2008, 6, (23), 4315-4318.
Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angewandte Chemie International Edition 2003, 42, (7), 772-776.
Kim, H.; Jeong, S. M.; Park, J. W. J. Am. Chem. Soc. 2011, 133, (14), 5206-5209.
Lin, C. M.; Li, C. S.; Sheng, Y. J.; Wu, D. T.; Tsao, H. K. Langmuir 2012, 28, (1), 689-700.
Holowka, E. P.; Sun, V. Z.; Kamei, D. T.; Deming, T. J. Nature Materials 2007, 6, (1), 52-57.
Holowka, E. P.; Pochan, D. J.; Deming, T. J. J. Am. Chem. Soc. 2005, 127, (35), 12423-12428.
Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J. Nature Materials 2004, 3, (4), 244-248.
Yoon, Y. R.; Lim, Y. B.; Lee, E.; Lee, M. Chem. Commun. 2008, (16), 1892-1894.
He, P. T.; Li, X. J.; Deng, M. G.; Chen, T.; Liang, H. J. Soft Matter 2010, 6, (7), 1539-1546.
Lim, H.; Huang, K. T.; Su, W. F.; Chao, C. Y. J. Polym. Sci. Pol. Chem. 2010, 48, (15), 3311-3322.
Li, Y. L.; Lin, S. L.; He, X. H.; Lin, J. P.; Jiang, T. J. Chem. Phys. 2011, 135, (1).
Lin, Y. L.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Soft Matter 2013, 9, (19), 4802-4814.
Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Schenning, A.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.; Del Guerzo, A.; Desvergne, J. P.; Maan, J. C. J. Am. Chem. Soc. 2005, 127, (4), 1112-1113.
Manyuhina, O. V.; Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Fasolino, A.; Katsnelson, M. I.; Schenning, A.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.; Maan, J. C. Phys. Rev. Lett. 2007, 98, (14).
Hoeben, F. J. M.; Shklyarevskiy, I. O.; Pouderoijen, M. J.; Engelkamp, H.; Schenning, L.; Christianen, P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem.-Int. Edit. 2006, 45, (8), 1232-1236.
Iatrou, H.; Frielinghaus, H.; Hanski, S.; Ferderigos, N.; Ruokolainen, J.; Ikkala, O.; Richter, D.; Mays, J.; Hadjichristidis, N. Biomacromolecules 2007, 8, (7), 2173-2181.
Li, K.; Wang, Q. Chem. Commun. 2005, (38), 4786-4788.
Yang, Z. F.; Wang, X. T.; Yang, Y. K.; Liao, Y. G.; Wei, Y.; Xie, X. L. Langmuir 2010, 26, (12), 9386-9392.
Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Angewandte Chemie-International Edition in English 1990, 29, (2), 138-175.
Kaanumalle, L. S.; Ramesh, R.; Maddipatla, V.; Nithyanandhan, J.; Jayaraman, N.; Ramamurthy, V. Journal of Organic Chemistry 2005, 70, (13), 5062-5069.
Shi, Z. H.; Lu, H. J.; Chen, Z. C.; Cheng, R. S.; Chen, D. Z. Polymer 2012, 53, (2), 359-369.
Gitsov, I.; Wooley, K. L.; Hawker, C. J.; Ivanova, P. T.; Frechet, J. M. J. Macromolecules 1993, 26, (21), 5621-5627.
Giner, I.; Haro, M.; Gascon, I.; del Barrio, J.; Lopez, M. C. Journal of Colloid and Interface Science 2011, 359, (2), 389-398.
del Barrio, J.; Oriol, L.; Alcala, R.; Sanchez, C. Macromolecules 2009, 42, (15), 5752-5760.
Lin, C. M.; Wu, D. T.; Tsao, H. K.; Sheng, Y. J. Soft Matter 2012, 8, (22), 6139-6150.
Chanturiya, A.; Chernomordik, L. V.; Zimmerberg, J. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, (26), 14423-14428.
Zhou, Y. F.; Yan, D. Y. J. Am. Chem. Soc. 2005, 127, (30), 10468-10469.
Zhou, Y. F.; Yan, D. Y. Angew. Chem.-Int. Edit. 2005, 44, (21), 3223-3226.
Luo, L. B.; Eisenberg, A. Langmuir 2001, 17, (22), 6804-6811.
Luo, L. B.; Eisenberg, A. J. Am. Chem. Soc. 2001, 123, (5), 1012-1013.
Shillcock, J. C.; Lipowsky, R. J. Phys.-Condes. Matter 2006, 18, (28), S1191-S1219.
Venturoli, M.; Sperotto, M. M.; Kranenburg, M.; Smit, B. Physics Reports-Review Section of Physics Letters 2006, 437, (1-2), 1-54.
Katsov, K.; Muller, M.; Schick, M. Biophys. J. 2004, 87, (5), 3277-3290.
Sevink, G. J. A.; Zvelindovsky, A. V. Macromolecules 2005, 38, (17), 7502-7513.
Katsov, K.; Muller, M.; Schick, M. Biophys. J. 2006, 90, (3), 915-926.
Mueller, M.; Katsov, K.; Schick, M. Physics Reports-Review Section of Physics Letters 2006, 434, (5-6), 113-176.
Noguchi, H.; Takasu, M. J. Chem. Phys. 2001, 115, (20), 9547-9551.
Noguchi, H.; Takasu, M. Biophys. J. 2002, 83, (1), 299-308.
Muller, M.; Katsov, K.; Schick, M. J. Chem. Phys. 2002, 116, (6), 2342-2345.
Muller, M.; Katsov, K.; Schick, M. Biophys. J. 2003, 85, (3), 1611-1623.
Marrink, S. J.; Mark, A. E. J. Am. Chem. Soc. 2003, 125, (37), 11144-11145.
Stevens, M. J.; Hoh, J. H.; Woolf, T. B. Phys. Rev. Lett. 2003, 91, (18).
Smeijers, A. F.; Markvoort, A. J.; Pieterse, K.; Hilbers, P. A. J. J. Phys. Chem. B 2006, 110, (26), 13212-13219.
Knecht, V.; Marrink, S.-J. Biophys. J. 2007, 92, (12), 4254-4261.
Gao, L. H.; Lipowsky, R.; Shillcock, J. Soft Matter 2008, 4, (6), 1208-1214.
Li, X. J.; Liu, Y.; Wang, L.; Deng, M. G.; Liang, H. J. Phys. Chem. Chem. Phys. 2009, 11, (20), 4051-4059.
Liu, Y. T.; Zhao, Y.; Liu, H.; Liu, Y. H.; Lu, Z. Y. J. Phys. Chem. B 2009, 113, (46), 15256-15262.
Wu, S.; Guo, H. J. Phys. Chem. B 2009, 113, (3), 589-591.
Sun, Y.; Lee, C. C.; Huang, H. W. Biophys. J. 2011, 100, (4), 987-995.
Markin, V. S.; Kozlov, M. M.; Borovjagin, V. L. Gen. Physiol. Biophys. 1984, 3, (5), 361-377.
May, S. Biophys. J. 2002, 83, (6), 2969-2980.
Chernomordik, L. V.; Kozlov, M. M. Annu. Rev. Biochem. 2003, 72, 175-207.
Frolov, V. A.; Zimmerberg, J. FEBS Lett. 2010, 584, (9), 1824-1829.
Yoon, T. Y.; Okumus, B.; Zhang, F.; Shin, Y. K.; Ha, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, (52), 19731-19736.
Mirjanian, D.; Dickey, A. N.; Hoh, J. H.; Woolf, T. B.; Stevens, M. J. J. Phys. Chem. B 2010, 114, (34), 11061-11068.
Smirnova, Y. G.; Marrink, S. J.; Lipowsky, R.; Knecht, V. J. Am. Chem. Soc. 2010, 132, (19), 6710-6718.
Shillcock, J. C.; Lipowsky, R. Nat. Mater. 2005, 4, (3), 225-228.
Grafmueller, A.; Shillcock, J.; Lipowsky, R. Phys. Rev. Lett. 2007, 98, (21).
Grafmuller, A.; Shillcock, J.; Lipowsky, R. Biophys. J. 2009, 96, (7), 2658-2675.
Scales, S. J.; Finley, M. F. A.; Scheller, R. H. Science 2001, 294, (5544), 1015-1016.
Chen, E. H.; Olson, E. N. Science 2005, 308, (5720), 369-373.
Gruner, S. M. Science 2002, 297, (5588), 1817-1818.
Gao, L.; Lipowsky, R.; Shillcock, J. Soft Matter 2008, 4, (6), 1208-1214.
Griffiths, D. J. Introduction to Quantum Mechanics, Pearson Prentice Hall: New Jersey, 2005.
Shankar, R. Principles of Quantum Mechanics, Springer: New York, 1994.
Nielsen,M. A.; Chuang, I. L. Quantum Computation and Quantum Information, Cambridge University Press: London, 2000.
Hirvensalo, M. Quantum Computing, Springer, 2004.
Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids, Clarendon Press: Oxford, England, 1987.
Frenkel, D.; Smit, B. Understanding Molecular Simulation, Academic Press: San Diego, 1996.
Leach, A. R. Molecular modelling: principles and applications, Pearson Prentice Hall: New Jersey, 2001.
van Gunsteren, W. F.; Berendsen, H. J. C. Ahgew. Chem. Int. Ed. 1990, 29, 990.
Metropolis, N.; Ulam, S. J. Am. Stat. Assoc. 1949, 44, 335.
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087.
Ando, T.; Meguro, T.; Yamato, I. J. Comput. Chem. 2002, 1, 3.
Ermak, D. L. J. Chem. Phys. 1975, 62, 15.
Ermak, D. L.; Yeh, Y. Chem. Phys. Lett. 1974, 24, 243.
Ermak, D. L.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352.
Hohenberg, P.; Kohn, W. Phys. Rev. B, 1964, 136, 864.
Levy, M. Proc. Natl. Acad. Sci. U. S. A., 1979, 76, 6062.
Kohn, W.; Sham, L. J. Phys. Rev. A. 1965, 140, 1133.
Stewart, J. J. P. Reviews in Computational Chemistry, Volume 1, Eds. K. B. Lipkowitz and D. B. Boyd, VCH: New York, 45, 1990.
Zerner, M. Reviews in Computational Chemistry, Volume 2, Eds. K. B. Lipkowitz and D. B. Boyd, VCH: New York, 313, 1991.
Nanda, D. N.; Jug, K. Theoretica. Chimica. Acta. 1980, 57, 95.
Strang,G.; Fix, G. An Analysis of the Finite Element Method, Wellesley-Cambridge Press, 2008.
Liu, G.; Liu M. B. Smoothed particle hydrodynamics: a meshfree particle method, World Scientific, 2003.
some of the images are taken from the following web sites :
http://www.ks.uiuc.edu/Research/nanopore/ ;
http://individuals.iii.u-tokyo.ac.jp/ ~takahiroharada/projects/sph.html; http://www.et.byu.edu/~tom/classes/477/477.html; http://atom.ik-pan.krakow.pl/mlbke/research.html; http://artikel-software.com/blog/2008/10/18/coco-simulator-software/
Hoogerbrugge, P. J.; Koelman, J. M. V. A. Europhys. Lett. 1992, 19, 155.
Koelman, J. M. V. A.; Hoogerbrugge, P. J. Europhys. Lett. 1993, 21, 363.
Espanol, P.; Warren, P. B. Europhys. Lett. 1995, 30, 191.
Schlijper, A. G.; Manke, C. W.; Madden, W. G.; Kong, Y. Int. J. Mod. Phys. C 1997, 8, 919.
Groot, R. D.; Rabone, K. L. Biophys. J. 2001, 81, 725.
Shillcock, J. C.; Lipowsky, R. J. Chem. Phys. 2002, 117, 5048.
Yamamoto, S.; Maruyama, Y.; Hyodo, S. J. Chem. Phys. 2002, 116, 5842.
Groot, R. D.; Madden, T. J. J. Chem. Phys. 1998, 108, 8713.
Groot R. D., Lect. Notes Phys. 2004, 640,5.
Groot R. D.; Warren, P. B., J. Chem. Phys., 1997 , 107, 4423.
Lowe, C. P. Europhys. Lett. 1999, 47, 145.
Jakobesen, A.; Mouritsen, O.; Besold, G. J. Chem. Phys. 2005, 122, 204901.
Den Otter, W. K.; Clarke, J. H. R. Int. J. Mod. Phys. C 2000, 11, 1179.
Quentrec, B.; Brot, C. J. Comput. Phys. 1975, 13, 430.
Hockney, R. W.; Eastwood, J. W. computer simulation using particles. McGraw-Hill: New York, 1981.
Wijmans, C. M.; Smit, B.; Groot, R. D. J. Comput. Phys. 2001, 114.
Schweizer, K. S.; Curro, J. G. J. Chem. Phys., 1989, 91,5059.
Freed, K. F. J. Phys. A, 1985, 18, 871
Blanco, M. J. Comput. Chem., 1991, 12,237 (1991).
Fan, C. F.; Olafson, B. D.; Blanco, M.; Hsu, S. L. Macromolecules, 1992, 25,3667.
Brandrup, J.; Immergut, E. H.; Grulke, E. A.; Abe, A.; Bloch, D. R., Polymer Handbook. 4th ed.; John Wiley: New York, 1999.
Schlijper, A. G.; Hoogerbrugge, P. J.; Manke, C. W. J. Rheol. 1995, 39, 567.
Maiti, A.; McGrother, S. J. Chem. Phys. 2004, 120, 1594.
Chou, S. H.; Tsao, H. K.; Sheng, Y. J. J. Chem. Phys. 2006, 125.
Sheng, Y. J.; Nung, C. H.; Tsao, H. K. J. Phys. Chem. B 2006, 110, 21643.
Yamamoto, S.; Hyodo, S. J. Chem. Phys. 2003, 118, 7937.
Levine, Y. K.; Gomes, A. E.; Martins, A. F.; Polimeno, A. J. Chem. Phys. 2005, 122.
Hunter, C. A.; Sanders, J. K. M., J. Am. Chem. Soc. 1990, 112 (14), 5525.
Hunter, C. A.; Meah, M. N.; Sanders, J. K. M., J. Am. Chem. Soc. 1990, 112 (15), 5773.
Hunter, C. A., Chem. Soc. Rev. 1994, 23 (2), 101.
Polimeno, A.; Gomes, A.; Martins, A. Computer Simulations of Liquid Crystals and Polymers, Springer: Netherlands, 2005, 135.
Clint, J. H., Surfactant Aggregation. Blackie: London, 1992.
Turro, N. J.; Yekta, A., J. Am. Chem. Soc. 1978, 100 (18), 5951.
Atik, S. S.; Nam, M.; Singer, L. A., Chem. Phys. Lett. 1979, 67 (1), 75.
Lianos, P.; Zana, R., J. Colloid Interface Sci. 1981, 84 (1), 100.
Tummino, P. J.; Gafni, A., Biophys. J. 1993, 64 (5), 1580.
Wang, X.; Zhou, Q.; Zhou, Q. Liquid crystalline polymers. World Scientific Pub. Co.: Singapore, 2004.
Donald, A.; Windle, A.; Hanna, S. Liquid crystalline polymers. Cambridge University Press: Cambridge, 2006.
Ghosh, S. Il Nuovo Cimento D 1984, 4, 229.
Collings, P.; Hird, M. Introduction to liquid crystals chemistry and physics. Taylor & Francis: 1997.
Israelachvili, J. N., Intermolecular and Surface Forces. Harcourt Brace and Company: London, 1992.
Discher, D. E.; Eisenberg, A., Science 2002, 297 (5583), 967.
W. Helfrich, and R. M. Servuss. Nuovo Cimento D. 1984, 3, 137.
W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham, and E. Evans, Biophys. J. 2000,279, 328.
P. Alexandridis and B. Lindman, Amphiphilic Block Copolymers : Self-Assembly and Applications, Elsevier, Amsterdam, 2000.
K. B. Zhulina, M. Adam, I. Larue, S. S. Sheiko and M. Rubinstein, Macromolecules, 2005, 38, 5330.
Y. J. Sheng, S. H. Chou and H. K. Tsao, J. Chem. Phys., 2006, 125, 194903.
Y. Mai and A. Eisenberg, Chem. Soc. Rev., 2012, 41, 5969.
P. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan and W. Meier, Acc. Chem. Res., 2011, 44, 1039.
D. M. Vriezema, M. C. Aragones, J. A. A. W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte, Chem. Rev., 2005, 105, 1445.
R. J. R. W. Peters, I. Louzao and J. C. M. van Hest, Chem. Sci., 2012, 3, 335.
W. H. Chang, S. H. Chou, J. J. Lin, W. C. Chen and Y. J. Sheng, J. Chem. Phys., 2012, 132, 214901.
D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa, P. C. M. Christianen, J. C. Maan, A. E. Rowan and R. J. M. Nolte, Angew. Chem. Int. Ed., 2003, 42, 772.
B. S. Kim, W. Y. Yang, J. H. Ryu, Y. S. Yoo and M. Lee, Chem. Commun., 2005, 2035.
B. S. Kim, D. J. Hong, J. Bae and M. Lee, J. Am. Chem. Soc., 2005, 127, 16333.
S. Jenekhe and X. Chen, Science, 1998, 279, 1903; Science, 1999, 283, 372.
C. M. Lin, C. S. Li, D. T. Wu, H. K. Tsao and Y. J. Sheng, Langmuir, 2012, 28, 689.
E. G. Bellomo, M. D. Wyrsta, L. Pakstis, D. J. Pochan and T. J. Deming, Nat. Mater., 2004, 3, 244.
E. P. Holowka, D. J. Pochan and T. J. Deming, J. Am. Chem. Soc., 2005, 127, 12423.
E. P. Holowka, V. Z. Sun, D. T. Kamei and T. J. Deming, Nat. Mater., 2007, 6, 52.
Y. R. Yoon, Y. B. Lim, E. Lee and M. Lee, Chem. Commun., 2008, 1892.
W. Agut, D. Taton, A. Bret, O. Sandre and S. Lecommandoux, Soft Matter, 2011, 7, 9744.
D. Rudhardt, C. Bechinger and P. Leiderer, Phys. Rev. Lett., 1998, 81, 1330.
R. Verma, J. C. Crocker, T. C. Lubensky and A. G. Yodh, Phys. Rev. Lett., 1998, 81, 4004.
P. J. Hoogerbrugge and J. Koelman, Europhys. Lett., 1992, 19, 155.
R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107, 4423.
P. Espanol and P. B. Warren, Europhys. Lett., 1995, 30, 191.
A. Polimeno, A. Gomes and A. Martins, Computer Simulations of Liquid Crystals and Polymers (Springer Netherlands, 2005, pp. 135-147).
G. R. Luckhurst and C. Zannoni, Nature, 1997, 267, 412.
A. AlSunaidi, W. K. den Otter and J. H. R. Clarke, Philos. Trans. R. Soc. A : Math. Phys. Eng. Sci., 2004, 362, 1773.
A. AlSunaidi, W. K. den Otter and J. H. R. Clarke, J. Chem. Phys., 2009, 130, 124910.
Y. K. Levine, A. E. Gomes, A. F. Martins and A. Polimeno, J. Chem. Phys., 2005, 122, 144902.
S. H. Chou, H. K. Tsao and Y. J. Sheng, J. Chem. Phys., 2011, 134, 034904.
S. H. Chou, D. T. Wu, H. K. Tsao and Y. J. Sheng, Soft Matter, 2011, 7, 9119.
J. H. Hung, Y. L. Lin, H. K. Tsao and Y. J. Sheng, Macromolecules, 2012, 45, 2166.
S. Yip, (ed.) Handbook of Materials Modeling (Springer Netherlands, 2005, pp. 2503--2512).
G. R. Luckhurst and C. Zannoni, Nature, 1977, 267, 412.
J. Steed and J Atwood, J. Supramolecular Chemistry; Wiley & Sons: Chichester, 2000.
W. Helfrich and R. M. Servuss, Nuovo Cimento D., 1984, 3, 137.
W. Rawicz, K. C. Olbrich, T. McIntosh, D. Needham and E. Evans, Biophys. J., 2000, 79, 328.
O. G. Mouritsen, Life as a Matter of Fact. The Emerging Science of Lipidomics (Springer, Berlin, 2005).
A. Grafmuer, J. Shillcock and R. Lipowsky, Phys. Rev. Lett., 2007, 98, 218101.
C. M. Lin, D. T. Wu, H. K. Tsao and Y. J. Sheng, Soft Matter, 2012, 8, 6139.
Chen, Q.; Schonherr, H.; Vancso, G. J. Small 2009, 5, 1436.
Ahmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M. L.; Minko, T.; Discher, D. E. Mol. Pharm. 2006, 3, 340.
Qiu, L. Y.; Bae, Y. H. Pharm. Res. 2006, 23, 1.
Christian, D. A.; Cai, S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Discher, D. E. Eur. J. Pharm. Biopharm. 2009, 71, 463.
Brinkhuis, R. P.; Rutjes, F.; van Hest, J. C. M. Polym. Chem. 2011, 2, 1449.
Cabane, E.; Zhang, X. Y.; Langowska, K.; Palivan, C. G.; Meier, W. Biointerphases 2012, 7, 1.
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Accounts Chem. Res. 2011, 44, 1039.
Zhang, X. Y.; Tanner, P.; Graff, A.; Palivan, C. G.; Meier, W. J. Polym. Sci. Pol. Chem. 2012, 50, 2293.
Malinova, V.; Belegrinou, S.; Ouboter, D. D.; Meier, W. P. Adv. Polym. Sci. 2010, 224, 113.
Hamley, I. W. Soft Matter 2005, 1, 36.
Liu, G. Y.; Liu, X. S.; Wang, S. S.; Chen, C. J.; Ji, J. Langmuir 2012, 28, 557.
Xiao, M. Y.; Liu, J. N.; Yang, J. X.; Wang, R.; Xie, D. Q. Soft Matter 2013, 9, 2434.
Luo, L. B.; Eisenberg, A. Langmuir 2001, 17, 6804.
Luo, L. B.; Eisenberg, A. J. Am. Chem. Soc. 2001, 123, 1012.
Zhou, Y. F.; Yan, D. Y. J. Am. Chem. Soc. 2005, 127, 10468.
Shillcock, J. C.; Lipowsky, R. J. Phys. Condens. Matter 2006, 18, S1191.
Venturoli, M.; Sperotto, M. M.; Kranenburg, M.; Smit, B. Phys. Rep. 2006, 437, 1.
Katsov, K.; Muller, M.; Schick, M. Biophys. J. 2004, 87, 3277.
Noguchi, H.; Takasu, M. J. Chem. Phys. 2001, 115, 9547.
Noguchi, H.; Takasu, M. Biophys. J. 2002, 83, 299.
Muller, M.; Katsov, K.; Schick, M. J. Chem. Phys. 2002, 116, 2342.
Muller, M.; Katsov, K.; Schick, M. Biophys. J. 2003, 85, 1611.
Muller, M.; Katsov, K.; Schick, M. Phys. Rep. 2006, 434, 113.
Marrink, S. J.; Mark, A. E. J. Am. Chem. Soc. 2003, 125, 11144.
Stevens, M. J.; Hoh, J. H.; Woolf, T. B. Phys. Rev. Lett. 2003, 91, 18.
Smeijers, A. F.; Markvoort, A. J.; Pieterse, K.; Hilbers, P. A. J. J. Phys. Chem. B 2006, 110, 13212.
Knecht, V.; Marrink, S. J. Biophys. J. 2007, 92, 4254.
Lin, C. M.; Wu, D. T.; Tsao, H. K.; Sheng, Y. J. Soft Matter 2012, 8, 6139.
Lin, Y. L.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Macromolecules 2012, 45, 7143.
Gao, L. H.; Lipowsky, R.; Shillcock, J. Soft Matter 2008, 4, 1208.
Li, X. J.; Liu, Y.; Wang, L.; Deng, M. G.; Liang, H. J. Phys. Chem. Chem. Phys. 2009, 11, 4051.
Liu, Y. T.; Zhao, Y.; Liu, H.; Liu, Y. H.; Lu, Z. Y. J. Phys. Chem. B 2009, 113, 15256.
Wu, S.; Guo, H. J. Phys. Chem. B 2009, 113, 589.
Katsov, K.; Muller, M.; Schick, M. Biophys. J. 2006, 90, 915.
Sevink, G. J. A.; Zvelindovsky, A. V. Macromolecules 2005, 38, 7502.
Muller, M.; Katsov, K.; Schick, M. J. Chem. Phys. 2002, 116, 2342.
Lin, S. T.; Fuchise, K.; Chen, Y.; Sakai, R.; Satoh, T.; Kakuchi, T.; Chen, W. C. Soft Matter 2009, 5, 3761.
van Buul, A. M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J. C.; Christianen, P. C. M.; Kouwer, P. H. J.; Nolte, R. J. M.; Engelkamp, H.; Blank K.; Rowan, A. E. Chem. Sci. 2013, 4, 2357.
Kim, B. S.; Yang, W. Y.; Ryu, J. H.; Yoo, Y. S.; Lee, M. Chem. Commun. 2005, 15, 2035.
Kim, B. S.; Hong, D. J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, 16333.
(a) Jenekhe, S.; Chen, X. Science 1998, 279, 1903. (b) Jenekhe, S.; Chen, X. Science 1999, 283, 372.
Hoogerbrugge, P. J.; Koelman, J. Europhys. Lett. 1992, 19, 155.
Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, 4423.
Espanol, P.; Warren, P. B. Europhys. Lett. 1995, 30, 191.
Chou, S. H.; Wu, D.T.; Tsao, H. K.; Sheng, Y. J. Soft Matter 2011, 7, 9119.
Polimeno, A.; Gomes, A.; Martins, A. Computer Simulations of Liquid Crystals and Polymers, Springer: Dordrecht, The Netherlands, 2005, pp 135-147.
Lin, Y. L.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Soft Matter 2013, 9, 4802.
(a) Holowka, E. P.; Pochan, D. J.; Deming, T. J. J. Am. Chem. Soc. 2005, 127, 12423. (b) Holowka, E. P.; Sun, V. Z.; Kamei, D. T.; Deming, T. J. Nat. Mater. 2007, 6, 52.
Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J. Nat. Mater. 2004, 3, 244.
Shillcock, J. C.; Lipowsky, R. Nat. Mater. 2005, 4, 225.
Grafmueller, A.; Shillcock, J.; Lipowsky, R. Phys. Rev. Lett. 2007, 98, 218101.
Siegel, D. P. Biophys J. 1984, 45, 399.
Chou, S. H.; Tsao, H. K.; Sheng, Y. J. J. Chem. Phys. 2011, 134, 034904.
Hamley, I. W. Soft Matter 2005, 1, (1), 36-43.
Rodriguez-Garcia, R.; Mell, M.; Lopez-Montero, I.; Netzel, J.; Hellweg, T.; Monroy, F. Soft Matter 2011, 7, (4), 1532-1542.
del Barrio, J.; Oriol, L.; Sanchez, C.; Serrano, J. L.; Di Cicco, A.; Keller, P.; Li, M. H. J. Am. Chem. Soc. 2010, 132, (11), 3762-3769.
Amstad, E.; Kim, S. H.; Weitz, D. A. Angew. Chem.-Int. Edit. 2012, 51, (50), 12499-12503.
Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. J. Phys. Chem. B 2007, 111, (6), 1262-1270.
Pietsch, C.; Mansfeld, U.; Guerrero-Sanchez, C.; Hoeppener, S.; Vollrath, A.; Wagner, M.; Hoogenboom, R.; Saubern, S.; Thang, S. H.; Becer, C. R.; Chiefari, J.; Schubert, U. S. Macromolecules 2012, 45, (23), 9292-9302.
Pearson, R. T.; Warren, N. J.; Lewis, A. L.; Armes, S. P.; Battaglia, G. Macromolecules 2013, 46, (4), 1400-1407.
Cabane, E.; Zhang, X. Y.; Langowska, K.; Palivan, C. G.; Meier, W. Biointerphases 2012, 7, (1-4).
Ahmed, F.; Pakunlu, R. I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M. L.; Minko, T.; Discher, D. E. Mol. Pharm. 2006, 3, (3), 340-350.
Christian, D. A.; Cai, S.; Bowen, D. M.; Kim, Y.; Pajerowski, J. D.; Discher, D. E. Eur. J. Pharm. Biopharm. 2009, 71, (3), 463-474.
Brinkhuis, R. P.; Rutjes, F.; van Hest, J. C. M. Polym. Chem. 2011, 2, (7), 1449-1462.
Tanner, P.; Baumann, P.; Enea, R.; Onaca, O.; Palivan, C.; Meier, W. Accounts Chem. Res. 2011, 44, (10), 1039-1049.
Langer, R. Science 1990, 249, (4976), 1527-1533.
Levine, D. H.; Ghoroghchian, P. P.; Freudenberg, J.; Zhang, G.; Therien, M. J.; Greene, M. I.; Hammer, D. A.; Murali, R. Methods 2008, 46, (1), 25-32.
Chen, Q.; Schonherr, H.; Vancso, G. J. Small 2009, 5, (12), 1436-1445.
Liu, G. Y.; Liu, X. S.; Wang, S. S.; Chen, C. J.; Ji, J. Langmuir 2012, 28, (1), 557-562.
Malinova, V.; Belegrinou, S.; Ouboter, D. D.; Meier, W. P., In Polymer Membranes/Biomembranes, Meier, W. P.; Knoll, W., Eds. 2010, (224), 113-165.
Zhang, X. Y.; Tanner, P.; Graff, A.; Palivan, C. G.; Meier, W. J. Polym. Sci. Pol. Chem. 2012, 50, (12), 2293-2318.
Xiao, M. Y.; Liu, J. N.; Yang, J. X.; Wang, R.; Xie, D. Q. Soft Matter 2013, 9, (8), 2434-2442.
Qiu, L. Y.; Bae, Y. H. Pharm. Res. 2006, 23, (1), 1-30.
Foster, S.; Borchert, K., Polymer Vesicles. In Encyclopedia of Polymer Science and Technology, John Wiley & Sons, Inc.: 2002.
Vriezema, D. M.; Hoogboom, J.; Velonia, K.; Takazawa, K.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. J. M. Angew. Chem.-Int. Edit. 2003, 42, (7), 772-776.
Kim, B. S.; Hong, D. J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, (46), 16333-16337.
Kim, B. S.; Yang, W. Y.; Ryu, J. H.; Yoo, Y. S.; Lee, M. Chem. Commun. 2005, (15), 2035-2037.
Chang, W. H.; Chou, S. H.; Lin, J. J.; Chen, W. C.; Sheng, Y. J. J. Chem. Phys. 2010, 132, (21), 214901.
Agut, W.; Taton, D.; Brulet, A.; Sandre, O.; Lecommandoux, S. Soft Matter 2011, 7, (20), 9744-9750.
Goodson, T.; Li, W. J.; Gharavi, A.; Yu, L. P. Adv. Mater. 1997, 9, (8), 639-643.
Lin, Y. L.; Chang, H. Y.; Sheng, Y. J.; Tsao, H. K. Soft Matter 2013, 9, (19), 4802-4814.
Lin, C. M.; Li, C. S.; Sheng, Y. J.; Wu, D. T.; Tsao, H. K. Langmuir 2012, 28, (1), 689-700.
Bellomo, E. G.; Wyrsta, M. D.; Pakstis, L.; Pochan, D. J.; Deming, T. J. Nat. Mater., 2004, 3, (4), 244-248.
Holowka, E. P.; Pochan, D. J.; Deming, T. J. J. Am. Chem. Soc., 2005, 127, (35), 12423-12428.
Holowka, E. P.; Sun, V. Z.; Kamei, D. T.; Deming, T. J. Nat. Mater., 2007, 6, (1), 52-57.
He, P. T.; Li, X. J.; Deng, M. G.; Chen, T.; Liang, H. J. Soft Matter 2010, 6, (7), 1539-1546.
Lim, H.; Huang, K. T.; Su, W. F.; Chao, C. Y. J. Polym. Sci. Pol. Chem. 2010, 48, (15), 3311-3322.
Li, Y. L.; Lin, S. L.; He, X. H.; Lin, J. P.; Jiang, T. J. Chem. Phys. 2011, 135, (1), 014102.
Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Schenning, A.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.; Del Guerzo, A.; Desvergne, J. P.; Maan, J. C. J. Am. Chem. Soc. 2005, 127, (4), 1112-1113.
Manyuhina, O. V.; Shklyarevskiy, I. O.; Jonkheijm, P.; Christianen, P. C. M.; Fasolino, A.; Katsnelson, M. I.; Schenning, A.; Meijer, E. W.; Henze, O.; Kilbinger, A. F. M.; Feast, W. J.; Maan, J. C. Phys. Rev. Lett. 2007, 98, (14), 146101.
Hoeben, F. J. M.; Shklyarevskiy, I. O.; Pouderoijen, M. J.; Engelkamp, H.; Schenning, L.; Christianen, P. C. M.; Maan, J. C.; Meijer, E. W. Angew. Chem.-Int. Edit. 2006, 45, (8), 1232-1236.
Iatrou, H.; Frielinghaus, H.; Hanski, S.; Ferderigos, N.; Ruokolainen, J.; Ikkala, O.; Richter, D.; Mays, J.; Hadjichristidis, N. Biomacromolecules 2007, 8, (7), 2173-2181.
Haluska, C. K.; Riske, K. A.; Marchi-Artzner, V.; Lehn, J. M.; Lipowsky, R.; Dimova, R. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, (43), 15841-15846.
Nomura, F.; Inaba, T.; Ishikawa, S.; Nagata, M.; Takahashi, S.; Hotani, H.; Takiguchi, K. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, (10), 3420-3425.
Lei, G. H.; MacDonald, R. C. Biophys. J. 2003, 85, (3), 1585-1599.
Hoogerbrugge, P. J.; Koelman, J. Europhys. Lett. 1992, 19, (3), 155-160.
Groot, R. D.; Warren, P. B. J. Chem. Phys. 1997, 107, (11), 4423-4435.
Yang, K; Vishnyakov, A.; Neimark, A. V. J. Phys. Chem. B 2013, 117, (13), 3648-3658.
Lei, H; Fedosov, D. A.; Caswell, B.; Karniadakis, G. E. J. Fluid Mech. 2013, 722, 214-239.
Gao, L. H.; Lipowsky, R.; Shillcock, J. Soft Matter 2008, 4, (6), 1208-1214.
Lin, C. M.; Wu, D. T.; Tsao, H. K.; Sheng, Y. J. Soft Matter 2012, 8, (22), 6139-6150.
Guo, B.; Finne-Wistrand, A.; Albertsson, A. C. Chem. Mat. 2011, 23, (17), 4045-4055.
Wang, H. B.; Wang, H. H.; Urban, V. S.; Littrell, K. C.; Thiyagarajan, P.; Yu, L. P. J. Am. Chem. Soc. 2000, 122, (29), 6855-6861.
Jin, L. Y.; Bae, J.; Ryu, J. H.; Lee, M. Angew. Chem.-Int. Edit. 2006, 45, (4), 650-653.
Chen, L.; Zhong, K. L.; Jin, L. Y.; Huang, Z.; Liu, L.; Hirst, L. S. Macromol. Res. 2010, 18, (8), 800-805.
Islam, M. R.; Dahan, E.; Saimani, S.; Sundararajan, P. R. Eur. Polym. J. 2012, 48, (9), 1538-1554.
Hung, J. H.; Lin, Y. L.; Sheng, Y. J.; Tsao, H. K. Macromolecules 2012, 45, (4), 2166-2170.
Chou, S. H.; Tsao, H. K.; Sheng, Y. J. J. Chem. Phys. 2011, 134, (3), 214901.
Helfrich, W.; Servuss, R. M. Nuovo Cimento Soc. Ital. Fis. D-Condens. Matter At. Mol. Chem. Phys. Fluids Plasmas Biophys. 1984, 3, (1), 137-151.
Rawicz, W.; Olbrich, K. C.; McIntosh, T.; Needham, D.; Evans, E. Biophys. J. 2000, 79, (1), 328-339.
de Cuendias, A.; Ibarboure, E.; Lecommandoux, S.; Cloutet, E.; Cramail, H.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58942-
dc.description.abstract高分子囊胞(polymersome)目前受到很多的關注與研究,主要原因是因為高分子囊胞有極大的潛在發展性,未來能夠應用在微反應器、藥物釋放以及細胞膜模擬上,是一種新穎的材料。而在製備上,高分子囊胞通常能由雙段鏈或多段鏈雙親性高分子自組裝聚合而成。本論文是選用具有硬桿鏈段之共聚高分子所自組裝的囊胞來作為研究對象,模擬的方法則是耗散粒子動力學法(dissipative particle dynamic, DPD),本篇文章的重點將放在對於不同構造的高分子自組裝成高分子囊胞的條件與其不同的相行為,進而討論各自所形成的高分子囊胞之微結構性質、機械性質以及與未來應用很相關的膜融合動力學行為。
在論文的第一部份中,我們利用耗散粒子動力學法探討硬桿-軟鏈共聚高分子(RxCy)在疏硬桿溶劑下的相行為,針對不同長度的組合,在特定濃度下成功找出能夠形成高分子囊胞的結構條件。發現當硬桿鏈段太長時,硬桿鏈段會有排列的情形,其自組裝行為偏好形成圓片狀,特別一提的是,如果硬桿鏈段具有共軛高分子的特性時,硬桿鏈段也會有規整排列的情形,不利於形成高分子囊胞。另外,我們也分析高分子囊胞的結構因子,當軟鏈段長度增長時,囊胞中含硬桿鏈段的膜厚會變薄,硬桿鏈段的單位密度也會下降,主要是因為囊胞內外的軟鏈段伸展方式不同所致。在囊胞的機械性質方面,我們分析了R5Cy (y = 1~3)型的囊胞,發現在R5C2型的高分子囊胞有較高的膜張力,與較低的拉伸模數與彎曲模數,推測對於膜融合實驗的結果有相當的影響,也就是造成R5C2型的高分子囊胞成功融合的原因,另外,R5C1型的高分子囊胞融合行為只有進行至半融合狀態,而R5C3型的高分子囊胞則是無法進入融合的步驟。
在論文的第二部份中,延續了上一個部分的主題,繼續討論硬桿-軟鏈共聚高分子囊胞的融合機制,影響膜融合的因素有膜張力、硬桿-軟鏈共聚高分子的個別長度、與溶劑的親疏性以及硬桿鏈段上的共軛高分子作用力。對於囊胞的膜融合,基本上有四個主要步驟,當兩顆高分子囊胞的初始接觸之後,在接觸的區域當中,第一條高分子的跨越即達第一個步驟(Kissing)。當兩顆囊胞的疏溶劑鏈段層互相連結接觸之後,也就是當stalk形成之後,則達到第二個步驟(Adhesion)。第三個步驟是指當兩個膜互相融合的區域變成一個膜厚的時候,稱之為半融合狀態(Hemifusion),最後一個步驟就是,膜融合的區域出現了足以讓兩顆高分子囊胞內溶劑連通的小洞時,則完成融合步驟(Fusion)。我們觀察了在融合的過程中硬桿鏈段的微觀區域排列,與磷脂質囊胞的融合有所不同。我們利用了膨脹法/萎縮法增加或減少高分子囊胞內部的溶劑量,在膜滲透性不佳的情況下,囊胞內的壓力也會改變,進而控制膜張力,證實了囊胞膜在高張力的情況下有利於融合的進行,也發現存在一個臨界膜張力能夠促使原本停留在半融合狀態的兩顆囊胞完成融合。另外,除了膜張力外,由覆蓋在囊胞內外層的軟鏈段所造成的等方向性立體阻礙也會影響融合結果,也就是較長的軟鏈段能夠形成一個較高的能量障礙阻止融合的進行,如果我們增加了溶劑對硬桿鏈段與溶劑對軟鏈段的疏溶劑程度,則可以降低融合的障礙。
在論文的第三部份中,主要是在探討軟鏈-硬桿-軟鏈三段鏈共聚高分子(CRC)在選擇性溶液中的相行為,以對稱的三段鏈共聚高分子為主(CmRxCm),變換硬桿與軟鏈段的長度,可得到五種主要的聚集形狀,分別是球型微胞、蟲型微胞、圓盤塊狀,蜂巢狀二維聚集以及高分子囊胞,然而受到硬桿與軟鏈的長度的限制,能夠形成高分子囊胞的條件十分嚴苛。為了要增加以三段鏈共聚高分子自組裝成高分子囊胞的機會,針對結構的因素,我們測試了兩種方法,一種是改變共聚高分子的對稱性,也就是形成不對稱的共聚高分子(CmRxCn,m < n),另一種是在硬桿鏈的正中間嵌入T鏈段分枝(Cm(RxTy)Cm),進而討論調整不對稱共聚高分子的軟鏈段長度與T鏈段長度對於相行為的影響,並分析這些囊胞的物理特性,最後觀察高分子囊胞的融合行為。
在論文的第四部份中,著重在一種線型樹枝狀共聚高分子(LDBC)的新穎材料,這種新穎的材料因嵌有偶氮苯(Azobenzene)短硬桿鏈段而具有光敏感性質,我們利用耗散粒子動力學法進行模擬,基由樹枝狀的世代數、濃度、各鏈段長度變化以及偶氮苯硬桿的π電子共軛強度進行熱力學相行為的討論,所產生的自組裝聚集形狀十分多樣,如球型微胞、蟲型微胞、線狀微胞、漢堡狀微胞、片狀,碗狀以及高分子囊胞,大致上來說,在世代數較大的情況下較有利於形成高分子囊胞,世代數較小時,只能形成奈米線狀與奈米片狀的微胞,此模擬結果與合成實驗的結果是一致的。在紫外光照射實驗中,因紫外光波長會改變偶氮苯短硬桿鏈段的化學性質與結構,而造成線型樹枝狀共聚高分子囊胞因此而產生表面皺褶、囊胞萎縮甚至破裂,在模擬實驗中我們除了驗證了此一光敏感現象外,更進一步模擬紫外光照對藥物釋放的行為影響。
zh_TW
dc.description.abstractPolymersomes have attracted great attention for their potential applications such as nano-reactor, drug release or cell imitator. The research objectives of this thesis are to explore the conditions for the formations of polymersomes self-assembled from rod-containing amphiphilic copolymers of various architectures. Structural, transport, and mechanical properties are studied to supplement the experimental findings. The fusion mechanisms between polymersomes are also explored. Due to the distinctive structural differences for various rod-containing block copolymers, different fusion behaviors are observed.
In the first part (chapter 3), polymersomes formed by rod-coil diblock copolymer (RxCy) is fundamentally different from that of coil–coil diblock copolymers due to the effect that the rod block has limited ability to stretch and to accommodate packing within self-assembled structures. RxCy denotes the polymer comprises of x rod-like beads and y coil-like beads. The morphological phase diagram of RxCy in selective solvents and the essential physical properties of the RxCy-polymersomes are studied by using dissipative particle dynamics. Our simulation results show that small-sized polymersomes can only take shape for rod-coils with short enough rod-block length. The extended chain crystalline phases or high-order smectics of the rod domain disrupts the formation of polymersome. The detailed membrane structures of RC-polymersomes are also investigated and it is found that the rods within the membrane are highly interdigitated which is essentially different from the ordered bilayer of the liposomes. Moreover, the structural and mechanical properties of RxCy -polymersomes behave in an unexpected manner as the coil-block length (y) is adjusted. The membrane tension exhibit a maximum while the stretching and bending moduli display a minimum at y = 2 as y varies from 1 to 3. In addition, R5C2-polymersomes fuse most easily. Whereas R5C1-polymersomes do not proceed beyond the hemisfusion stage and R5C3-polymersomes can not even move past the initial kissing stage.
In the second part (Chapter 4), the fusion mechanism of polymersomes self-assembled by rod-coil copolymers is investigated by dissipative particle dynamics. The influences of membrane tension, coil-block length, rod-block length, mutual compatibility between solvent and rod-coil block, and π-π interaction on the fusion pathway are explored. The fusion process of spontaneously formed polymersomes generally consists of four stages. In the kissing stage, hopping of rod-blocks forms connection between two vesicles of one-legged rod-coil copolymer. In the adhesion stage, a stalk is developed by a few link-up rods and then a stretched diaphragm with rods lying parallel to the stretching direction is formed in the hemi-fusion stage. Eventually, a pore is developed and expanded in the fusion stage. If the membrane tension (τ) is adjusted by deflation/inflation, the hemi-fusion diaphragm disappears. As τ is reduced, multiple stalks take shape and lead to the formation of inverted micelles, which is the rate-determining step and raises the fusion time substantially. As τ is elevated, the neck is developed after the stalk formation. The fusion time is significantly accelerated. τ of spontaneously formed vesicles varies with coil-block length, rod-block length, solvent quality, and π-π interaction. There exists a critical value of τ below which the fusion process cannot be completed and a hemi-fused polymersome is formed. In addition to τ, the anisotropic steric interactions within the rod layers also resist hopping of longer rod-blocks. The coil layers develop a barrier impeding fusion between vesicles with longer coil-blocks. Consequently, lowering the solvent quality for the coil-block or rod-block facilitates the fusion process because the coil layer becomes thinner.
In the third part (Chapter 5), self-assembly behaviors of coil-rod-coil copolymers in a selective solvent are explored by dissipative particle dynamics. The morphological phase diagram as a function of rod length and coil length shows five distinct types of aggregates, including spherical micelle, worm-like micelle, disk-like aggregate, honeycomb structure, and polymersome. Small polymersomes are formed at rather poor alignment associated with the monolayered rod domain. Some of the rods are even lying perpendicular to the radial direction. For symmetric copolymers (CmRxCm), the condition of vesicle formation is restricted to short coil and rod lengths. To favor the formation of CRC-polymersome, two architecture modifications are adopted. One is to increase the coil length asymmetrically to be CmRxCn, where n>m. The other one is to tether a T-block onto the middle of the rod-block as Cm(RxTy)Cm copolymers. For those CRC-polymersomes, structural, transport, and mechanical properties of the vesicular membrane are determined, including membrane thickness, area density of coil blocks, order parameter, solvent permeability, frequency of flip-flop, membrane tension, and stretching and bending moduli. The influences of the coil length (n) and tethered block length (y) on membrane properties are examined. Finally, the mechanism of membrane fusion between CRC-polymersomes is investigated. The fusion process involves four stages and in the contact region the rods lying perpendicular to the direction of the rod layer play the key role. The encounter of two vesicles may result in fused, hemifused, or non-fused polymersome. The final fate is determined by the competition between membrane tension and steric barrier of coil corona. The fusion outcome may change if the tension is altered by manipulating the lumen pressure.
In the last part (Chapter 6), azobenzene-containing linear-dendritic block-copolymers (LDBC) with varied generation numbers were synthesized recently. This photosensitive LDBC consists of a linear solvophilic block (R) and solvophilic dendrons of which the periphery is attached with a solvophobic coil-rod diblock (B-Y). The self-assembly and its photoresponsive transformation are explored by dissipative particle dynamics. Dependent on the generation number, polymer concentration, block lengths, and π-π
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:40:08Z (GMT). No. of bitstreams: 1
ntu-102-D98524017-1.pdf: 16693057 bytes, checksum: 3dcf1c1a38df8041ecc7e00127897b8c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgement II
Abstract V
中文摘要 IX
Content XII
Table Captions XVI
Figure Captions XVII
Chapter 1 Introduction 1
1-1 Introduction to Polymersome 1
1-2 Polymersome Formation 4
1-3 Polymersome Self-Assembled by Conjugated Block Copolymers 6
1-3-1 Rod-coil diblock copolymer (RC) 7
1-3-2 Coil-rod-coil triblock copolymer (CRC) 13
1-3-3 Rod-coil-rod triblock copolymer (RCR) 17
1-3-4 Linear-dendritic block copolymer (LDBC) 22
1-4 Membrane Fusion Process between Liposomes and Polymersomes 26
1-5 References 30
Chapter 2 Simulation Method 35
2-1 Introduction 35
2-1-1 Time scale and space scale in computing simulation system 37
2-2 Dissipative Particle Dynamic Method 39
2-2-1 Coarse-grained model 40
2-2-2 DPD forces 41
2-2-3 Integration algorithm of DPD method 45
2-2-4 Noise distribution 47
2-3 Other Parameters in DPD Method 49
2-3-1 Dimensionless 49
2-3-2 Periodic boundary condition 50
2-3-3 Cell list method 51
2-3-4 Temperature and pressure 53
2-4 Flory-Huggins Theory Connect with Repulsion Parameter 54
2-4-1 Mapping onto Flory-Huggins theory 55
2-4-2 The choosing of the χ parameter 60
2-5 DPD Additional Forces 63
2-5-1 Spring force on polymer chains 63
2-5-2 Angle force 65
2-5-3 Additional forces on rod segments 67
2-5-4 Angle spring force 68
2-5-5 Rod spring force 68
2-5-6 π-π interaction force 69
2-6 Parameters and Data Analysis 71
2-6-1 Mean aggregation number 71
2-6-2 Order parameter (S) 72
2-6-3 Packing parameter (PP) 75
2-6-4 Surface tension of membrane 77
2-6-5 Mechanical properties 78
2-7 References 81
Chapter 3 Structural and Mechanical Properties of Polymersomes Formed by Rod-Coil Diblock Copolymers 85
3-1 Introduction 85
3-2 Model and Simulation Methods 89
3-3 Results and Discussion 92
3-3-1 Morphological phase diagram: effect of rod-block length 93
3-3-2 Effect of π-π interaction strength on the morphological phase behavior 95
3-3-3 Membrane structure of RC-polymersome: comparison to model lipid 97
3-3-4 Manipulation of the membrane properties of RC-polymersome by adjusting the coil-block length 99
3-3-5 Structural properties 100
3-3-6 Mechanical properties 103
3-3-7 Fusion between polymersomes 106
3-4 References 109
Chapter 4 Fusion Mechanism of Small Polymersomes Formed by Rod-Coil Diblock Copolymers 121
4-1 Introduction 121
4-2 Model and Simulation Method 125
4-2-1 DPD method 125
4-2-2 System model 127
4-3 Result and Discussion 128
4-3-1 Effect of membrane tension on fusion pathways 129
4-3-2 Effect of coil-block length (y) on fusion pathways 132
4-3-3 Effect of mutual compatibility between solvent and coil-block (aSC) 135
4-3-4 Effect of rod-block length (x) 136
4-3-5 Effect of π-π interaction strength 138
4-4 References 141
Chapter 5 Polymersomes Formed by Coil-Rod-Coil Triblock Copolymers: Structural, Transport, Mechanical Properties, and Fusion 155
5-1 Introduction 155
5-2 Model and Simulation Method 159
5-2-1 DPD method 159
5-2-2 System model 160
5-3 Result and Discussion 161
5-3-1 Symmetric triblock copolymer (CmRxCm) 162
5-3-1-1. Phase diagram 162
5-3-1-2. Structural property 163
5-3-1-3. Transport and Mechanical properties 165
5-3-2 Asymmetric triblock copolymer (CmR5Cn) 168
5-3-3 T-block tethered triblock copolymer (Cm(RxTy)Cm) 171
5-3-3-1. Phase diagram 172
5-3-3-2. Structural, transport, and mechanical properties 172
5-3-4 Fusion mechanism for C1RxCn triblock copolymers 174
5-4 References 177
Chapter 6 Photoresponsive Polymersomes Formed by Amphiphilic Linear Dendritic Block Copolymers: Generation-Dependent Aggregation Behavior 193
6-1 Introduction 193
6-2 Model and Simulation Method 198
6-2-1 Interactions between DPD beads 199
6-2-2 System parameters 201
6-3 Results and Discussion 204
6-3-1 Self-assembly of LDBCs: comparison between experiments and simulations 205
6-3-2 Photoresponsive polymersome upon UV irradiation 208
6-3-3 Phase diagram of R12-dendr[B2-Y3]n: Effect of polymer concentration 212
6-3-4 Phase diagram of Rx-dendr[B2-Y3]n: Effects of solvophilic R-block 213
6-3-5 Effects of B-block length on phase diagram and photoresponse 216
6-3-6 Effect of π-π strength associated with Y-rods 219
6-4 References 221
Chapter 7 Conclusion 235
dc.language.isoen
dc.title具有硬桿鏈段之共聚高分子自組裝囊胞的研究:耗散粒子動力學法zh_TW
dc.titleSelf-assembled Polymersomes Formed by Block Copolymers with Rod Segments: Dissipative Particle Dynamicsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹恆光(Heng-Kwong Tsao),林祥泰(Shiang-Tai Lin),謝之真(Chih-Chen Hsieh),童世煌(Shih-Huang Tung),陳宣毅(Hsuan-Yi Chen)
dc.subject.keyword耗散粒子動力學法,自組裝,硬桿軟鏈段共聚高分子,高分子囊胞,膜融合,藥物釋放,zh_TW
dc.subject.keywordDPD method,Self-assembly,Rod-coil copolymer,Polymersome,Membrane fusion,Drug delivery,en
dc.relation.page244
dc.rights.note有償授權
dc.date.accepted2013-09-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
16.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved