請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃楓婷 | |
| dc.contributor.author | I-Ting Cheng | en |
| dc.contributor.author | 鄭義庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:39:42Z | - |
| dc.date.available | 2018-10-23 | |
| dc.date.copyright | 2013-10-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-01 | |
| dc.identifier.citation | 1. G. W. Litman et al., Phylogenetic diversification of immunoglobulin genes and the antibody repertoire. Molecular biology and evolution 10, 60 (Jan, 1993).
2. S. Tonegawa, Somatic generation of antibody diversity. Nature 302, 575 (Apr 14, 1983). 3. J. M. Di Noia, M. S. Neuberger, Molecular mechanisms of antibody somatic hypermutation. Annual review of biochemistry 76, 1 (2007). 4. J. Stavnezer, Immunoglobulin class switching. Current opinion in immunology 8, 199 (Apr, 1996). 5. J. Stavnezer, J. E. Guikema, C. E. Schrader, Mechanism and regulation of class switch recombination. Annual review of immunology 26, 261 (2008). 6. T. Honjo, K. Kinoshita, M. Muramatsu, Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annual review of immunology 20, 165 (2002). 7. J. Chaudhuri, F. W. Alt, Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nature reviews. Immunology 4, 541 (Jul, 2004). 8. S. G. Conticello, C. J. Thomas, S. K. Petersen-Mahrt, M. S. Neuberger, Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Molecular biology and evolution 22, 367 (Feb, 2005). 9. M. Muramatsu et al., Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. The Journal of biological chemistry 274, 18470 (Jun 25, 1999). 10. S. K. Petersen-Mahrt, R. S. Harris, M. S. Neuberger, AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99 (Jul 4, 2002). 11. A. Martin, M. D. Scharff, Somatic hypermutation of the AID transgene in B and non-B cells. Proceedings of the National Academy of Sciences of the United States of America 99, 12304 (Sep 17, 2002). 12. J. Chaudhuri et al., Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726 (Apr 17, 2003). 13. I. M. Okazaki et al., Constitutive expression of AID leads to tumorigenesis. The Journal of experimental medicine 197, 1173 (May 5, 2003). 14. A. R. Ramiro, M. C. Nussenzweig, Immunology: aid for AID. Nature 430, 980 (Aug 26, 2004). 15. Z. Xu, H. Zan, E. J. Pone, T. Mai, P. Casali, Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nature reviews. Immunology 12, 517 (Jul, 2012). 16. P. Revy et al., Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102, 565 (Sep 1, 2000). 17. R. Mizuta et al., Molecular visualization of immunoglobulin switch region RNA/DNA complex by atomic force microscope. The Journal of biological chemistry 278, 4431 (Feb 14, 2003). 18. K. Yu, F. Chedin, C. L. Hsieh, T. E. Wilson, M. R. Lieber, R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature immunology 4, 442 (May, 2003). 19. A. Aguilera, T. Garcia-Muse, R loops: from transcription byproducts to threats to genome stability. Molecular cell 46, 115 (Apr 27, 2012). 20. X. Y. Zhong, P. Wang, J. Han, M. G. Rosenfeld, X. D. Fu, SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Molecular cell 35, 1 (Jul 10, 2009). 21. J. C. Long, J. F. Caceres, The SR protein family of splicing factors: master regulators of gene expression. The Biochemical journal 417, 15 (Jan 1, 2009). 22. L. Twyffels, C. Gueydan, V. Kruys, Shuttling SR proteins: more than splicing factors. The FEBS journal 278, 3246 (Sep, 2011). 23. X. Li, J. L. Manley, Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122, 365 (Aug 12, 2005). 24. Y. Kanehiro et al., Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1. Proceedings of the National Academy of Sciences of the United States of America 109, 1216 (Jan 24, 2012). 25. M. Dasso, R. T. Pu, Nuclear transport: run by Ran? American journal of human genetics 63, 311 (Aug, 1998). 26. D. Yudin, M. Fainzilber, Ran on tracks--cytoplasmic roles for a nuclear regulator. Journal of cell science 122, 587 (Mar 1, 2009). 27. S. Etienne-Manneville, A. Hall, Rho GTPases in cell biology. Nature 420, 629 (Dec 12, 2002). 28. E. M. Griner, D. Theodorescu, The faces and friends of RhoGDI2. Cancer metastasis reviews 31, 519 (Dec, 2012). 29. H. Ishizaki et al., Defective chemokine-directed lymphocyte migration and development in the absence of Rho guanosine diphosphate-dissociation inhibitors alpha and beta. Journal of immunology 177, 8512 (Dec 15, 2006). 30. M. Nakamura et al., High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. International immunology 8, 193 (Feb, 1996). 31. B. E. Aubol et al., Partitioning RS Domain Phosphorylation in an SR Protein through the CLK and SRPK Protein Kinases. Journal of molecular biology 425, 2894 (Aug 23, 2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58935 | - |
| dc.description.abstract | 抗體類型轉換重組 (class switch recombination, CSR) 使B細胞從表現IgM轉換成表現其他類型的抗體而能有效因應外來抗原。本論文旨在尋找並探討尚未被發掘參與CSR機制中的蛋白質,藉由解析這些蛋白質的功能,能對CSR機制有更進一步的了解。研究材料為小鼠B細胞株CH12F3,此細胞株在培養液中添加α-CD40抗體、IL-4和TGF-β刺激之後會進行CSR,從表現抗體IgM轉變成表現抗體IgA,藉由二維電泳分離未受刺激和受刺激3天的CH12F3全蛋白質樣品,將有表現量差異的蛋白質以質譜儀鑑定,鑑定得到的蛋白質有RanBP1、SRSF1和RhoGDI2。然而免疫染色結果顯示這三個蛋白質表現量在刺激3天的細胞中沒有上升的情形,與二維膠片結果不符,推測問題是內部系統控制組選擇不當,目前仍在尋找合適的內部系統控制組。
文獻報導指出DT40細胞中SRSF1會抑制R-loops的生成,而SRSF1的異構型 (isoform) SRSF1-3對於SHM的進行十分重要。目前已知R-loops會參與CSR且SHM和CSR機制上有許多相似的部份,所以本論文對於SRSF1是否參與在CSR做更深入的研究。由SRSF1表現量和細胞受刺激時間關係的實驗結果,發現在受刺激2天或3天細胞中,SRSF1蛋白質表現量沒有顯著改變,但Srsf1 mRNA在受刺激2天細胞中表現量上升約3倍,推測SRSF1可能在後轉錄層次被調控,此外二維免疫染色亦觀察到SRSF1有磷酸化程度改變的可能。最後嘗試建立穩定表現Srsf1 shRNA的細胞株,觀察是否會影響CSR頻率,但目前尚未得到有效抑制SRSF1表現的細胞株。未來實驗設計可以朝Srsf1基因剔除 (gene knockout)、SRSF1在細胞被刺激前後是否有磷酸化程度和細胞內區域化分布 (localization) 改變等方向進行,才能進一步了解SRSF1是否為CSR的參與因子。 | zh_TW |
| dc.description.abstract | To efficiently defend various antigens, B cells switch immunoglobulin isotype from IgM to others by class switch recombination (CSR). Previous studies indicate that various proteins are involved in CSR, but the detailed mechanism remains unclear. Therefore, in the thesis, we planned to identify more potential and unknown proteins involved in CSR. The murine B cell line, CH12F3 cells, switch from IgM-positive cells to IgA-positive cells after stimulation with α-CD40 antibody, interleukin 4 (IL-4) and transforming growth factor beta (TGF-β). Total cell lysates of unstimulated and stimulated CH12F3 were collected and analyzed by the two-dimensional electrophoresis (2DE), and the up-regulated or down-regulated proteins between these two samples were identified by the mass spectrometry. RanBP1, SRSF1 and RhoGDI2 were found up-regulated in stimulated cells. However, with the 1DE followed by western blot with the corresponding antibody, the protein level of these proteins had no difference in unstimulated and stimulated cells. We speculated the problem was the internal control used in 2DE might not be suitable for quantification.
Previous studies show that SRSF1 influence the formation of R-loops and frequency of SHM in the chicken DT40 cell, so we are interested if SRSF1 is involved in CSR. After stimulation, Srsf1 mRNA expression increased about 3-fold comparing to unstimulated cells, but the protein level of SRSF1 remained unchanged. Interestingly, on the 2DE followed by the western blotting with α-SRSF1 antibody, several protein spots with the same molecular weight have different isoelectric points were shown on the membrane. We inferred that these protein spots might due to the different phosphorylation status of SRSF1. Therefore, we speculated when cells undergo CSR, SRSF1 altered its phosphorylation status but not protein expression level. Next, in order to know if SRSF1 is involved in CSR, the SRSF1 expression was knockdown in CH12F3 by shRNA. However, the stable Srsf1 knockdown cell has not been obtained yet. The role of SRSF1 in CSR needs further experiments to confirm, such as Srsf1 gene knockout, the phosphorylation status and subcellular localization of SRSF1 during CSR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:39:42Z (GMT). No. of bitstreams: 1 ntu-102-R00B22017-1.pdf: 2051255 bytes, checksum: cb11e24f3c7f5294fb08125d9c984015 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 ⅰ
英文摘要 ⅱ 目錄 ⅳ 第一章、緒論 1 1.1、抗體及其多樣性 1 1.2、抗體類型轉換重組 (Class switch recombination, CSR) 3 1.3、Activation-induced cytidine deaminase (AID) 4 1.4、R-loops 4 1.5、Serine/arginine-rich splicing factor 1 (SRSF1) 5 1.6、Ran-specific GTPase-activating protein (RanBP1) 6 1.7、Rho GDP-dissociation inhibitor 2 (RhoGDI2) 6 1.8、研究動機與目的 7 第二章、材料與方法 8 2.1、細胞培養與分析 8 2.1.1、細胞培養 8 2.1.2、細胞刺激與分析 8 2.2、基因抑制 8 2.2.1、製備shRNA質體 8 2.2.2、轉染作用 (transfection) 9 2.3、瓊脂糖膠體電泳 9 2.4、蛋白質分析 10 2.4.1、蛋白質樣品的製備 10 2.4.2、蛋白質樣品的定量 10 2.4.3、一維電泳 11 2.4.4、二維電泳 11 2.4.5、蛋白質轉印 12 2.4.6、免疫染色法 12 2.5、質譜儀鑑定 13 2.6、RNA定量 13 2.6.1、抽取total RNA 13 2.6.2、DNase處理 14 2.6.3、製備互補DNA (complementary DNA, cDNA) 14 2.6.4、即時定量聚合脢鏈反應 (real time PCR) 14 2.6.5、相對定量 (Relative Quantization, ΔΔCt method) 15 第三章、實驗結果 16 3.1、進行CSR前後CH12F3細胞的全蛋白質二維電泳圖譜 16 3.1.1、尋找候選蛋白質 16 3.1.2、確認候選蛋白質 17 3.2、CH12F3中候選蛋白質的表現量分析 17 3.3、SRSF1表現量分析 18 3.3.1、mRNA表現量 18 3.3.2、蛋白質表現量與CH12F3受刺激時間的關係 18 3.4、CH12F3中抑制Srsf1基因表現 18 第四章、實驗討論 20 4.1、進行CSR前後CH12F3細胞的全蛋白質二維電泳圖譜 20 4.1.1、內部系統控制組 20 4.1.2、候選蛋白質 21 4.2、SRSF1表現量分析 21 4.3、Srsf1基因抑制 21 第五章、實驗未來發展 23 5.1、二維電泳和質譜儀鑑定 23 5.2、SRSF1分析 25 第六章、實驗圖表 27 圖一、進行二維電泳的受刺激3天CH12F3 IgA陽性細胞比例 27 圖二、CH12F3細胞的全蛋白質二維電泳圖譜和候選蛋白質點定量 28 表一、質譜儀鑑定結果 29 圖三、候選蛋白質的二維免疫染色 31 圖四、未受刺激和受刺激3天CH12F3中候選蛋白質的二維免疫染色 32 圖五、未受刺激和受刺激3天CH12F3中候選蛋白質的表現量 33 圖六、未受刺激和受刺激2天CH12F3中Srsf1 mRNA的表現量 34 圖七、未受刺激、受刺激2天和受刺激3天CH12F3中SRSF1的表現量 35 圖八、以shRNA進行Srsf1基因抑制結果 (1) 36 圖九、以shRNA進行Srsf1基因抑制結果 (2) 37 圖十、以shRNA進行Srsf1基因抑制結果 (3) 38 圖十一、β-actin的二維免疫染色 39 圖十二、α-tubulin的二維免疫染色 40 參考文獻 41 附錄一、shRNA菌株編號對應之TRCN編號 44 附錄二、引子序列 45 附錄三、RT-qPCR反應條件 45 附錄四、進行CSR前後CH12F3細胞的全蛋白質二維電泳圖 (pH 3-10) 46 附錄五、口試委員提出之問題與建議 47 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗體類型轉換重組 | zh_TW |
| dc.subject | 二維電泳 | zh_TW |
| dc.subject | 抗體 | zh_TW |
| dc.subject | SRSF1 | zh_TW |
| dc.subject | antibody | en |
| dc.subject | class switch recombination | en |
| dc.subject | two dimensional electrophoresis | en |
| dc.title | 以蛋白質體學法尋找抗體類型轉換重組機制中潛在重要的蛋白質 | zh_TW |
| dc.title | Investigation of Potential Proteins in Class Switch Recombination (CSR) by Proteomic Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊健志,張麗冠,張世宗,冀宏源 | |
| dc.subject.keyword | 抗體,抗體類型轉換重組,二維電泳,SRSF1, | zh_TW |
| dc.subject.keyword | antibody,class switch recombination,two dimensional electrophoresis, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-10-01 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
