請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 譚義績(Yih-Chi Tan) | |
| dc.contributor.author | Fong-Zuo Lee | en |
| dc.contributor.author | 李豐佐 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:39:31Z | - |
| dc.date.available | 2013-11-19 | |
| dc.date.copyright | 2013-11-05 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-02 | |
| dc.identifier.citation | 1. Akiyama, J., and Stefan, H. (1984) “Plunging flow into a reservoir: Theory”, Journal of Hydraulic Engineering, Vol. 110, No. 4, pp. 484–499.
2. Akiyama, J., and Stefan, H. (1985) “Turbidity current with erosion and deposition.” Journal of Hydraulic Engineering, Vol. 111, No. 12, pp. 1473-1496. 3. Alavian, V. (1986) “Behavior of density currents on an incline”, Journal of Hydraulic Engineering, Vol. 112, No. 1, pp. 27–42. 4. Altinakar M. S., Graf W. H., and Hopfinger E. J. (1990) “Weakly depositing turbidity current on a small slope”, Journal of Hydraulic Research, IAHR 28, pp.55–80. 5. Altinakar, M. S., Graf, W. H., and Hopfinger, E. J. (1996) “Flow structure in turbidity currents”, J. Hydr. Res. 34, pp. 713–718. 6. ANSYS, Inc.(2006)“ANSYS-CFX reference guide'. 7. Auel, C., Boes, R., Ziegler, T., and Oertli, C. (2011) ‘‘Design and construction of the sediment bypass tunnel at Solis”, 79th Annual Meeting, Lucerne, Switzerland, pp. 62-66. 8. Batchelor, G. K. (1982)'Sedimentation in a dilute polydisperse system of interacting spheres. Ptl, general theory, Journal of Fluid Mechanics., Vol. 119, pp. 379–408. 9. Best, J., Kirkbride, A. D., and Peakall, J. (2001) “Mean flow and turbulence structure of gravity currents. Sediment transport and deposition by particulate gravity currents”, Spec. Publ. Int. Assoc. Sediment, pp. 159–173. 10. Bonnecaze, R. T., Huppert, H. E., and Lister, J. R. (1993) “Partical-driven gravity currents.” Journal of Fluid Mechanics, Vol. 250, pp. 339-369. 11. Buehler, J., and Siegenthaler C. (1986), Self-preserving solutions for turbidity currents, Acta Mechanica, 63(1), , pp. 217-233. 12. CFDS-CFX Release 4.1, user guide. (1995) “Computational Fluid Dynamics Services”, Harwell Lab., Oxfordshire, U. K. 13. Chien, N., and Wan, Z. (1999) 'Mechanics of sediment transport', ASCE, Reston, Va., pp. 662–665. 14. Christoph D. O., and Anton, J. S. (2007) “Control of Turbidity Currents in Reservoirs by Solid and Permeable Obstacles”, Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 637~648. 15. Chung, S. W., and Lee, H. S. (2009) ' Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs', Water Science and Technology, pp. 47–55. 16. De Cesare, G., Boillat, J., and Schleiss, A. (2006) “Circulation in Stratified Lakes due to Flood-Induced Turbidity Currents.” Journal of Hydraulic Engineering, Vol. 132, No. 11, pp. 1508-1517. 17. De Cesare, G., Schleiss, A., and Hermann, F. (2001) ‘‘Impact of turbidity current on reservoir sedimentation’’, Journal of Hydraulic Engineering, Vol. 127, No. 1, pp. 6–16. 18. Ellison, T. H., and Turner, J. S. (1959) “Turbulent Entrainment in Stratified Flow”, Journal of Fluid Mechanics, No. 6. pp. 423~448. 19. Fan, J. (1959)' Experimental research of density current movement', Journal of Hydraulic Engineering, Vol. 5, pp. 30–48. 20. Fan, J., Wu, D., Shen, S., and Jiang, N. (1980) “Experimental studies on turbid density currents and their applications”, Proc., 1st Symp. River Sedimentation, Water Resour., Electr. Power Press, Beijing, China, B8.1-B8.10. 21. Farrel, G. J., and Stefan, H. (1988) “mathematical modeling of plunging reservoir flows.” Journal of Hydraulic Research, Delft, the Netherlands, Vol. 26, No. 5, pp. 525-537. 22. Farrell, G. J., and Stefan, H. (1986) “Mathematical modeling of plunging reservoir flows”, Journal of Hydraulic Resources, Vol. 26,No. 5, pp. 525–537. 23. Firoozabadi, B., Afshin, H., and Aram, E. (2009) “Three-Dimensional Modeling of Density Current in a Straight Channel” Journal of Hydraulic Research, Vol. 135, No. 5, pp. 393-406. 24. Firoozabadi, B., Farhanieh, B., and Rad, M. (2003) “Hydrodynamics of two-dimensional, laminar turbid density currents.” Journal of Hydraulic Research, Vol. 41, No. 6, pp. 623-630. 25. Fukushima, Y. (1998) “Numerical simulation of gravity current front.” Journal of Hydraulic Engineering, Vol. 124, No. 6, pp. 572-578. 26. Garica, M. H. (1992) “Turbidity currents”, Encyclopedia of earth system science, Vol. 4, pp. 399-408. 27. Gessler, D., Hall, B., Spasojevic, M., Holly, F., Pourtaheri, H., and Raphelt, N. (1999)“Application of 3D mobile bed,hydrodynamic model.” ASCE Journal of Hydraulic Engineering 125:737-749. 28. Graf, W. H. (1983) “The behavior of silt-laden current”, Water power and dam construction, Vol. 35, No. 9, pp. 33–38. 29. Gu, R. and Chung, S. W. (1998) “Reservoir flow sensitivity to inflow and ambient parameters.” Journal of Water Resources Planning and Management, May-June, pp. 119-128. 30. Hager, W. H. (1985) ‘‘A simplified rainfall-runoff model.’’, J. Hydro., Amsterdam, Vol. 74, pp.151–170 ; Vol. 80, pp.395–398. 31. Hebbert, B., Imberger, J., Loh, I., and Patterson, J. (1979) 'Collie River Underflow into the Wellington Reservoir', Journal of the Hydraulics Division, ASCE, Vol. 105, No. HY5, Proc. Paper 14593, pp. 533-545. 32. Hosseini, S. A., Shamsai, A., and Ataie-Ashtiani, B. (2006) “Synchronous measurements of the velocity and concentration in low density turbidity currents using an Acoustic Doppler Velocimeter.”, Flow Measurement and Instrumentation, Vol. 17, pp. 59-68. 33. Khosronejad, A., Rennie, C. D., and Salehi, Neyshabouri, A. A. (2008) “Three-dimensional numerical modeling of reservoir sediment release.” Journal of Hydraulic Research, Vol. 46, No. 2, pp. 209-223. 34. Lamb, M. P., Hickson, T., Marr, J. G., Sheets, B., Paola, C., and Parker, G. (2004)” Surging Versus Continuous Tubidity Currents: Flow Dynamics and Deposits in an Experimental Intraslope Minibasin.” Journal of Sedimentation Research, Vol. 74, No. 1, pp. 148~155. 35. Lee, H. Y., and Yu, W. S. (1997) “Experiment study of reservoir turbidity current.” Journal of Hydraulic Engineering, Vol. 123, No. 6, pp. 520-527. 36. Ling, L. W., Kuo, C. K., Lee, S. H., and Chao, K. M. (1991) “Research of flushing methods in Hengshan reservoir.” Research of sediment, pp. 47-53. in Chinese 37. Manninen, M., Taivassalo, V., and Kallio, S. (1996) “On the Mixture Model for Multiphase Flow.” VIT Publications, Technical Research Centre of Finland. 38. Mulder, T., and Syvitsky, J. P. M. (1995) ‘‘Turbidity currents generated at river mouths during exceptional discharges to the world oceans.’’, J. Geology, Vol. 103, pp.285–299. 39. Neary, J. P., Fitzsimons, E., and Hogan, V. (1999) 'Explaining the volume of north south trade : a gravity model approach.' Open Access publications from University College Dublin urn:hdl:10197/48, University College Dublin. 40. Oehy, C. D., and Schleiss, A. J. (2007) “Control of Turbidity Currents in Reservoirs by Solid and Permeable Obstacles.” Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 637-648. 41. Parker, G., and Toniolo, H. (2007) “Note on the analysis of plunging of density flows”, Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 690-694. 42. Parker, G., Fukushima, Y., and Pantin, H. M. (1986) “Self-accelerating turbidity current.” Journal of Fluid Mechanics, Vol. 171, pp. 145-181. 43. Parker, G., Garcia, M., Fukushima, Y., and Yu, W. (1987) “Experiment on Turbidity Currents: Theory and Observation”, Journal of Hydraulic Research, Vol. 25, No. 1, pp. 123-147. 44. Quamrul Ahsan, A. K. M., and Blumberg Alan F. (1999) 'Three-dimensional hydrothermal model of Onondaga Lake', New York. J. Hydraulic Eng. v125, pp. 912-923. 45. Richardson, J. F., and Zaki, W. N. (1954) 'Sedimentation and fluidzation.', Pt. I. trans. Inst. Chem. Engrs. Vol. 32, pp. 35–53. 46. Richardson, L. F. (1920) “The Supply of Energy from and to Atmospheric Eddies.” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 97(686), pp.354-373. 47. Savage, S. B., and Brimberg, J. (1975) “Analysis of plunging phenomena in water reservoirs.”, Journal of Hydraulic Resources, Vol. 13, No.2, pp. 187–205. 48. Schlapfer, D. B., Buhler, J., and Dracus, T. (1987) “Dense inflows into narrow reservoir.”, Proc. 3rd Int. Symp. on Stratified Flows, Int. Assn. for Hydraulic Resources, pp. 3–5. 49. Singh, B., and Shah, C. R. (1971) “Plunging phenomenon of density currents in reservoirs.”, Houille Blanche, Vol. 26, No.1, pp. 59–64. 50. Stancy, M. W., and Bowen, A. J. (1988) “The vertical structure of turbility currents and a necessary conditions for self-maintenance.” Journal of Geophysical Research., 93(c4), pp. 3543-3553. 51. Svetlana, K., and Gary, P. (2006) “The response of turbidity currents to a canyon–fan transition: internal hydraulic jumps and depositional signatures.” Journal of Hydraulic Research, Vol. 44, No. 5, pp. 631-653. 52. Toniolo, H., Parker, G., and Voller, V. (2007) “Role of Ponded Turbidity Currents in Reservoir Trap Efficiency.” Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 579-595. 53. Turner, J. S. (1973) “Buoyancy Effects in Fluids”, Cambridge University Press, Cambridge, U.K. 54. Umeda, M., Yokoyama, K., and Ishikawa, T. (2006) “Observation and Simulation of Floodwater Intrusion and Sedimentation in the Shichikashuku Reservoir.” Journal of Hydraulic Engineering, Vol. 132, No. 9, pp. 881-81. 55. Wunderlich, W. O., and Elder, R. A. (1973) “Mechanism of flow through man-made lakes.”, Man-made Lakes: their problems and environmental effects, C. Ackermann, G. F. White, and E. B. Worthington, eds., Am. Geophys. Union, Washington, D. C. 56. Xia, Z., and Wang, G. (1982) “The settling of non-cohesive particles in flocculated suspension in Chinese.” Journal of sediment research, No. 1, pp. 14-23. 57. Young, D. L., and Lin, Q. H. (2005) “Two-dimensional simulation of a thermally stratified reservoir with high sediment-laden inflow.” Journal of Hydraulic Research, Vol. 43, No. 4, pp. 351-365. 58. Yu, W. S., Hsu, S. H., and Fan, K. L. (2004) “Experiments on Selective Withdrawal of a Codirectional Two-Layer Flow through a Line Sink.” Journal of Hydraulic Engineering, Vol. 130, No. 12, pp. 1156–1167. 59. 方春明、韓其為、何明民(1997),「異重流潛入條件分析及立面二維數值模擬」,泥砂研究,第四期,12 月, pp. 68-75。 60. 吳銘順、廖清標、許少華(2000),「立面二維鹽水異重流數值模擬」,第十一屆水利工程研討會, pp. 13〜18。 61. 李豐佐、賴進松、譚義績、李隆正、林永峻(2010),'異重流運移之水槽試驗與數值模擬',台灣水利,第五十八卷,第四期,pp.1~12。 62. 李豐佐、賴進松、譚義績、李鴻源、林子傑(2010),“水庫壩體坡度影響異重流運移之試驗研究”,台灣水利,第五十八卷,第二期,pp.11~21。 63. 林子傑(2006),「不同壩體坡度異重流正湧波之研究」,國立台灣大學土木工程研究所碩士論文。 64. 俞維昇(1991),「水庫沉滓運動特性之研究」,國立台灣大學土木工程學研究所博士論文。 65. 徐小微(2002) ,「鹽水異重流之潛入現象與沿程變化之分析」,私立逢甲大學土木及水利工程研究所碩士論文。 66. 陜西水利科學研究所河渠研究室、清華大學水利工程系泥砂研究室(1979),「水庫泥砂」,水利電力出版社。 67. 許盈松(1991),「異重流正湧波之研究」,國立台灣大學土木工程研究所碩士論文。 68. 經濟部水利署南區水資源局 (2009),「97-98年度曾文水庫庫區泥砂濃度觀測系統建置暨量測研判分析計畫」,臺灣大學水工試驗所。 69. 賴進松(2006),「水庫異重流與水庫減淤操作驗研究」, 國立台灣大學水工試驗所, 研究報告692號。 70. 賴進松(2008) ,「曾文水庫庫區泥砂濃度觀測站建置及量測研判分析計畫」, 國立台灣大學水工試驗所, 研究報告805號。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58932 | - |
| dc.description.abstract | 當水庫集水區水流進入水庫後,因流速減緩使得輸砂能力降低,其挾帶入庫的泥砂可能沉降庫底或形成水庫異重流,若入庫的泥砂在水庫形成異重流且運移至壩體時,其運動行為將受到下游壩體形狀之影響。本研究進行水槽試驗,用以探討壩體附近無排砂操作情況下,水庫異重流運移至壩前,受阻於不同水庫壩體坡度後產生的現象及行為。由試驗結果可知,在相同單寬入流量及濃度下,異重流在壩體斜坡之爬升速度以及最大爬升高度與壩體坡度成正比關係;但在相同壩體坡度與單寬入流流量下,異重流最大爬升高度與異重流壅高高度反比於入流濃度。
此外,試驗結果分析得知,異重流正湧波之波速主要受理查遜數(Richardson number)、異重流正湧波所行之相對距離及壩體坡度之影響。本研究異重流正湧波波速之經驗式,可供不同壩體坡度的水庫概算出異重流正湧波迴溯上游之距離及速度,有助於估算形成異重流水庫所需的時間。 本研究利用計算流體力學模擬模式(CFX),以及水槽試驗的試驗結果,模擬異重流於試驗水槽中的運移過程,其中包含異重流頭部與本體的運移、異重流沿著下游尾水板爬升與異重流正湧波的形成;在不考慮泥砂與清水間之動量交換條件下,採用代數滑移數值方法 (Algebraic Slip Model, ASM)來模擬異重流濃度與速度隨著時間的變化,以及異重流正湧波的沿程運移。本研究採用高嶺土試驗與鹽水試驗所量測的數據,進行數值模式的檢定驗證與適用性探討。並將檢定驗證完成的參數與數值方法,作為模擬鹽水異重流受到下游尾水板傾斜角90度與45度影響的依據。由模擬結果可知,模式模擬高嶺土異重流與鹽水異重流受到下游尾水板傾斜角90度的影響前,到達下游尾水板前的沿程速度剖面與濃度剖面,其相對誤差約為5%,而受到下游尾水板傾斜角90度的影響後,異重流正湧波波速相對誤差則約為10%;模擬鹽水異重流受到下游尾水板傾斜角45度的應用例時,除了異重流平均爬升速度約有6.98%的相對誤差、異重流爬升高度有約5.94%的相對誤差,以及異重流正湧波的模擬速度有約6%的相對誤差外,CFX模式模擬的異重流頭速、異重流厚度及異重流正湧波厚度平均相對誤差皆小於5%,因此,經由試驗案例的模擬分析,採用CFX模式中的ASM數值方法求解異重流各試驗案例,其模擬結果相當符合試驗值。 本研究經由石門水庫之潛入點位置分析後發現,利用潛入點經驗公式以及理論公式所推求之潛入點發生位置,以密度福祿數為1 ( )時最為接近。此外,利用霞雲站迴歸公式及用羅浮站實際量測數據所推估之潛入點位置約有2個斷面的差異性。若以霞雲站迴歸公式與羅浮站實際量測數據所推估之密度福祿數,在尖峰流量過後則約有1.5倍的差異性。因此若以霞雲站迴歸公式所推估之密度福祿數用以判斷潛入點發生位置,則密度福祿數建議採用2.0,即可約略等同於用羅浮站實際量測數據所求得之實際異重流潛入點位置。 最後本研究根據在曾文水庫在壩前所觀測之分層泥砂濃度值,所推估之發電取水口(PPI)及永久河道放水口(PRO)之排砂濃度及排砂效率可知,不論是出流泥砂濃度值或是出流泥砂濃度之逐時變化,本研究校正過後之方程式最能符合實際量測之出水泥砂濃度及排砂效率,且由壩前數值模擬泥砂濃度及實測數據所推估之排砂效率,率定出排砂效率參數K值約等於0.2。且根據所計算之排砂效率相對誤差值可知,本研究所採用之公式具有相對準確性,且由數值模擬結果可知設置減淤通道前雖然各出水工(PRO、發電取水口及溢洪道)之排砂比較高。但相對將泥砂帶至壩前的量也越多,越容易導致泥砂沉積在壩前而影響日後之出水工操作。當減淤通道設置後,大部分之泥砂會被減淤通道帶離水庫,因此相對降低了各出水工之排砂效率,此現象對於出水工之持續運作有所幫助。且由模擬之減淤通道排砂比可知,規劃之減淤通道之排砂比皆大於各出水工之效能,對於水庫防淤有更進一步的助益。 | zh_TW |
| dc.description.abstract | When turbidity current flows into a reservoir, the main cause of sedimentation problem is the sediment transport ability. The sediment transport ability decays by means of velocity when turbidity current flows into a reservoir. After that, the inflow sediment may deposit on the bottom of the reservoir or develops to the density current. When density current develops and moves to the downstream, its flow mechanism is affected by dam. Therefore, this study focus on the behavior and character of density current during density current is affected by different dam slopes. The experimental results present the density current climbing velocity and the maximum climbing height are directly proportional to the dam slopes. But, the maximum density current climbing height and its thickness are inverse proportional to the inflow concentration. On the other hand, the positive surge is mainly affected by Richardson number, the relative distance traveled by positive surge and dam slopes. Based on this research, the experimental formulas can utilize to compute positive surge velocity under variant slopes of the dam. It can be helpfully to estimate the timing of reservoir turning into turbidity.
A laboratory study was conducted using a flume which combined CFX, fluid simulation software with the experimental results to simulate the density urrent movement. Algebraic Slip Model (ASM) scheme of CFX was adopted to simulate the hydraulic properties of density current including the head velocity, concentration and velocity distribution of body movement, climbing velocity and climbing height along the dam slope, thickness of density current and positive surge velocity. Since particle fall velocity was the major physical parameter in ASM scheme. It was taken into account for sediment transport between sediment and clear water. The kaolin and saline water were used as density current fluid materials. The results of the experiment were employed for numerical calibration and verification. The CFX was then employed to simulate the movement of density current movement with downstream shape of 900 and 450. The calibration and verification results showed that relative deviation (5%) in concentration and velocity distribution was satisfied. The simulation results indicate that relative deviation in climbing velocity and climbing height along the slope were 6.98% and 5.94%, respectively. Other hydraulic properties mentioned above also had less than 6% relative deviations. These experimental values agree well with the results of numerical simulation. In the result, this numerical tool is suitable for simulation the movement of the density current. This study based on empirical formula, theoretical derivation and field observation to investigate plunge point variation in Shihmen reservoir. A successful estimation of plunge area was been used to analysis the possibility position of plunge point. Based on the investigation results, the plunge point is approximated at . In addition, the plunge area have 2 section difference due to the inflow sediment concentration is from regression formula and field measurement. According to the estimation of , there are 4 times difference and 1.5 times difference before peak discharge and recession duration, respectively. Therefore, the is suggested to estimate plunge point when inflow sediment concentration is used from regression formula. The research results of Tsengwen reservoir indicate that proposed equation is relatively accuracy to estimate venting efficiency of power plant intake and permanent river outlet. The simulated hydrograph of venting efficiency using modified equation is much better than others. And, the venting coefficient K of modified equation is calibrated to 0.2 that was using Typhoon event in TsengWen reservoir. Besides, although lower structures can drainage higher sediment concentration and reach higher venting efficiency, but, large sediment would be carried to near the dam to increase deposition elevation. Over a period of time, deposition elevation would higher than intake elevation and affect its operation. Therefore, if bypass tunnel and desiltation passage can be established at upstream the deposition delta can be controlled and deposition elevation of dam site also could be maintained. Moreover, if drainage facility could be set more upstream of reservoir, coarse material could be flushing out by bypass tunnel and fine sediment could be vented by desiltation passage. In addition, such planed concept can prevent reservoir sedimentation and keep more water resources. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:39:31Z (GMT). No. of bitstreams: 1 ntu-102-D94622004-1.pdf: 5055179 bytes, checksum: 1147bcbfde4866426f234f1d89a48691 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號說明 XV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究方法 6 第二章 理論基礎 8 2.1數值模式 8 2.2理論方程式 11 2.2.1 潛入點理論分析 11 2.2.2 排砂效率分析 13 2.2.4 異重流正湧波之因次分析 15 第三章 模型試驗 17 3.1異重流運移試驗 17 3.1.1 異重流運移試驗設備(大水槽) 17 3.1.2 試驗材料及量測設備(大水槽) 18 3.1.3 試驗結果(大水槽) 20 3.1.4異重流運移試驗設備及步驟(小水槽) 22 3.1.5異重流運移之細部流場與濃度(小水槽) 30 3.2異重流排砂效率試驗 39 3.2.1 鹽水異重流試驗布置(大水槽) 39 3.2.2 鹽水異重流試驗條件與量測(大水槽) 39 3.2.3 鹽水異重流試驗結果與討論(大水槽) 40 3.2.4 高嶺土異重流試驗布置(大水槽) 45 3.2.5 高嶺土異重流試驗步驟與量測(大水槽) 45 3.2.6 高嶺土異重流試驗結果與討論(大水槽) 46 3.2.7 曾文水庫異重流減淤通道試驗 (小水槽) 50 3.3 異重流迴溯正湧波試驗 56 3.3.1試驗條件 58 3.3.2試驗步驟 59 3.3.3試驗結果與分析 61 第四章 數值模擬 69 4.1異重流運移模擬分析 69 4.2異重流排砂效率模擬分析 74 4.2.1異重流排砂效率模擬分析(大水槽) 74 4.2.2 曾文水庫異重流減淤通道模擬分析 (小水槽) 79 4.3 異重流迴溯正湧波模擬分析 84 4.3.1 異重流迴溯正湧波模擬分析 (大水槽) 84 4.3.2 異重流迴溯正湧波流速模擬分析 (小水槽) 89 第五章 現場應用 95 5.1石門水庫 95 5.1.1 異重流運移觀測 96 5.1.2 潛入點位置估算 98 5.2曾文水庫 102 5.2.1排砂效率數值模擬及分析 102 5.2.2可行性減淤通道配置方式及排砂效率評估 118 第六章結論與建議 128 6.1結論 128 6.2建議 131 參考文獻 132 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壩體坡度 | zh_TW |
| dc.subject | 正湧波 | zh_TW |
| dc.subject | 潛入點 | zh_TW |
| dc.subject | 密度福祿數 | zh_TW |
| dc.subject | 排砂效率 | zh_TW |
| dc.subject | 減淤通道 | zh_TW |
| dc.subject | 異重流 | zh_TW |
| dc.subject | ASM | zh_TW |
| dc.subject | CFX | zh_TW |
| dc.subject | 異重流 | zh_TW |
| dc.subject | 理查遜數 | zh_TW |
| dc.subject | Richardson number | en |
| dc.subject | Desiltation passage | en |
| dc.subject | Venting efficiency | en |
| dc.subject | Densimetric Froude Number | en |
| dc.subject | Plunge point | en |
| dc.subject | Density current | en |
| dc.subject | Positive surge | en |
| dc.subject | Algebraic Slip Model | en |
| dc.subject | Density current | en |
| dc.subject | CFX | en |
| dc.subject | Dam slopes | en |
| dc.title | 水庫異重流排砂效率及運移行為之數值模擬與模型試驗 | zh_TW |
| dc.title | Simulation and experiment of density current on venting efficiency and movement mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 賴進松(Jihn-Sung Lai) | |
| dc.contributor.oralexamcommittee | 蔡長泰,陳主惠,葉克家 | |
| dc.subject.keyword | 異重流,理查遜數,壩體坡度,CFX,異重流,ASM,正湧波,潛入點,密度福祿數,排砂效率,減淤通道, | zh_TW |
| dc.subject.keyword | Density current,Richardson number,Dam slopes,CFX,Density current,Algebraic Slip Model,Positive surge,Plunge point,Densimetric Froude Number,Venting efficiency,Desiltation passage, | en |
| dc.relation.page | 135 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-10-02 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
