Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏國彥
dc.contributor.authorYun-Jung Chenen
dc.contributor.author陳韻嫆zh_TW
dc.date.accessioned2021-06-16T08:38:20Z-
dc.date.available2015-11-05
dc.date.copyright2013-11-05
dc.date.issued2013
dc.date.submitted2013-10-14
dc.identifier.citationAmo, M., and M. Minagawa (2003), Sedimentary record of marine and terrigenous organic matter delivery to the Shatsky Rise, western North Pacific, over the last 130 kyr, Organic Geochemistry, 34(9), 1299-1312.
Bickert, T., W. H. Berger, S. Burke, H. Schmidt, and G. Wefer (1993), Late Quaternary stable isotope record of benthic foraminifers: Sites 805 and 806, Ontong Java Plateau, In: Berger, W.H., Kroenke, L.W., Mayer, L.A., et al., Proc. ODP, Sci. Results, 130: College Station, TX (Ocean Drilling Program), 411-420.
Bordiga, M., L. Beaufort, M. Cobianchi, C. Lupi, N. Mancin, V. Luciani, N. Pelosi, and M. Sprovieri (2013), Calcareous plankton and geochemistry from the ODP site 1209B in the NW Pacific Ocean (Shatsky Rise): New data to interpret calcite dissolution and paleoproductivity changes of the last 450 ka, Palaeogeography, Palaeoclimatology, Palaeoecology, 371(0), 93-108.
Bostock, H. C., B. N. Opdyke, M. K. Gagan, and L. K. Fifield (2004), Carbon isotope evidence for changes in Antarctic Intermediate Water circulation and ocean ventilation in the southwest Pacific during the last deglaciation, Paleoceanography, 19(4), PA4013.
Boyle, E. A. (1992), Cd and δ13C paleochemical ocean distributions during the stage 2 glacial maximum, Annual Review of Earth and Planetary Science, 20, 245-287.
Broecker, W. S., and T. H. Peng (1982), Tracers in the Sea. , 690 pp., Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York.
Carter, R. M., I. N. McCave, C. Richter, L. Carter, and et. al. (1999), Proceedings of the Ocean Drilling Program, Initial Reports, 181: College Station, TX (Ocean Drilling Program): College Station, TX (Ocean Drilling Program).
Charles, C. D., J. Lynch-Stieglitz, U. S. Ninnemann, and R. G. Fairbanks (1996), Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations, Earth and Planetary Science Letters, 142(1–2), 19-27.
Curry, W. B., and G. P. Lohmann (1982), Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns, Quaternary Research, 18(2), 218-235.
Curry, W. B., and D. W. Oppo (2005), Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean, Paleoceanography, 20(1), 1-12.
Curry, W. B., J. C. Duplessy, L. D. Labeyrie, and N. J. Shackleton (1988), Changes in the distribution of δ13C of deep water CO2 between the last glaciation and the Holocene, Paleoceanography, 3(3), 317-341.
Dunbar, R. B., and G. Wefer (1984), Stable isotope fractionation in benthic foraminifera from the Peruvian continental margin, Marine Geology, 59(1–4), 215-225.
Duplessy, J. C., N. J. Shackleton, R. G. Fairbanks, L. Labeyrie, D. Oppo, and N. Kallel (1988), Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation, Paleoceanography, 3(3), 343-360.
Duplessy, J. C., N. J. Shackleton, R. K. Matthews, W. Prell, W. F. Ruddiman, M. Caralp, and C. H. Hendy (1984), 13C record of benthic foraminifera in the last interglacial ocean: Implications for the carbon cycle and the global deep water circulation, Quaternary Research, 21(2), 225-243.
Flower, B. P., D. W. Oppo, J. F. McManus, K. A. Venz, D. A. Hodell, and J. L. Cullen (2000), North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr, Paleoceanography, 15(4), 388-403.
Gorbarenko, S. A. (1996), Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the northwestern Pacific and its marginal seas, Quaternary Research, 46(3), 230-250.
Graham, D. W., B. H. Corliss, M. L. Bender, and L. D. Keigwin Jr (1981), Carbon and oxygen isotopic disequilibria of recent deep-sea benthic foraminifera, Marine Micropaleontology, 6(5–6), 483-497.
Hall, I. R., I. N. McCave, N. J. Shackleton, G. P. Weedon, and S. E. Harris (2001), Intensified deep Pacific inflow and ventilation in Pleistocene glacial times, Nature, 412(6849), 809-812.
Herguera, J. C., E. Jansen, and W. H. Berger (1992), Evidence for a bathyal front at 2000-M depth in the glacial Pacific, based on a depth transect on Ontong Java Plateau, Paleoceanography, 7(3), 273-288.
Hodell, D. A., C. D. Charles, and U. S. Ninnemann (2000), Comparison of interglacial stages in the South Atlantic sector of the southern ocean for the past 450 kyr: implifications for Marine Isotope Stage (MIS) 11, Global and Planetary Change, 24(1), 7-26.
Hodell, D. A., K. A. Venz, C. D. Charles, and U. S. Ninnemann (2003), Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean, Geochem. Geophys. Geosyst., 4(1), 1004.
Hoshiba, M., N. Ahagon, K. Ohkushi, M. Uchida, I. Motoyama, and A. Nishimura (2006), Foraminiferal oxygen and carbon isotopes during the last 34 kyr off northern Japan, northwestern Pacific, Marine Micropaleontology, 61(4), 196-208.
Hovan, S. A., D. K. Rea, and N. G. Pisias (1991), Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments, Paleoceanography, 6(3), 349-370.
Kawabe, M., S. Fujio, and D. Yanagimoto (2003), Deep-water circulation at low latitudes in the western North Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 50(5), 631-656.
Kawabe, M., D. Yanagimoto, S. Kitagawa, and Y. Kuroda (2005), Variations of the deep western boundary current in Wake Island Passage, Deep Sea Research Part I: Oceanographic Research Papers, 52(7), 1121-1137.
Kawabe, M., S. Fujio, D. Yanagimoto, and K. Tanaka (2009), Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 56(10), 1675-1687.
Keigwin, L. D. (1998), Glacial-age hydrography of the far northwest Pacific Ocean, Paleoceanography, 13(4), 323-339.
Kroopnick, P. M. (1985), The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Research Part A. Oceanographic Research Papers, 32(1), 57-84.
Lisiecki, L. E. (2010), A simple mixing explanation for late Pleistocene changes in the Pacific-South Atlantic benthic δ13C gradient, Clim. Past, 6, 305-314.
Lisiecki, L. E., and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 20(1), PA1003.
Lund, D. C., and A. C. Mix (1998), Millennial-scale deep water oscillations: Reflections of the North Atlantic in the deep Pacific from 10 to 60 ka, Paleoceanography, 13(1), 10-19.
Maeda, L., H. Kawahata, and M. Nohara (2002), Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western North Pacific during the late Quaternary, Marine Geology, 189(3–4), 197-214.
Matsumoto, K., and J. Lynch-Stieglitz (1999), Similar glacial and Holocene deep water circulation inferred from southeast Pacific benthic foraminiferal carbon isotope composition, Paleoceanography, 14(2), 149-163.
Matsumoto, K., T. Oba, J. Lynch-Stieglitz, and H. Yamamoto (2002), Interior hydrography and circulation of the glacial Pacific Ocean, Quaternary Science Reviews, 21(14–15), 1693-1704.
McCave, I. N., L. Carter, and I. R. Hall (2008), Glacial-interglacial changes in water mass structure and flow in the SW Pacific Ocean, Quaternary Science Reviews, 27(19-20), 1886-1908.
Mix, A. C., and R. G. Fairbanks (1985), North Atlantic surface-ocean control of Pleistocene deep-ocean circulation, Earth and Planetary Science Letters, 73(2–4), 231-243.
Morozov, E., A. Demidov, R. Tarakanov, and W. Zenk (2010), Deep water masses of the South and North Atlantic, in Abyssal Channels in the Atlantic Ocean, edited, pp. 25-50, Springer Netherlands.
Ninnemann, U. S., and C. D. Charles (2002), Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability, Earth and Planetary Science Letters, 201(2), 383-396.
Oba, T., T. Irino, M. Yamamoto, M. Murayama, A. Takamura, and K. Aoki (2006), Paleoceanographic change off central Japan since the last 144,000 years based on high-resolution oxygen and carbon isotope records, Global and Planetary Change, 53(1–2), 5-20.
Ohkouchi, N., H. Kawahata, M. Murayama, M. Okada, T. Nakamura, and A. Taira (1994), Was deep water formed in the North Pacific during the Late Quaternary? Cadmium evidence from the Northwest Pacific, Earth and Planetary Science Letters, 124(1–4), 185-194.
Ohkushi, K. i., A. Suzuki, H. Kawahata, and L. P. Gupta (2003), Glacial–interglacial deep-water changes in the NW Pacific inferred from single foraminiferal δ18O and δ13C, Marine Micropaleontology, 48(3–4), 281-290.
Oppo, M. E. Raymo, G. P. Lohmann, A. C. Mix, J. D. Wright, and W. L. Prell (1995), A δ13C record of Upper North Atlantic Deep Water during the past 2.6 million years, Paleoceanography, 10(3), 373-394.
Owens, W. B., and B. A. Warren (2001), Deep circulation in the northwest corner of the Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, 48(4), 959-993.
Raymo, M. E., D. Hodell, and E. Jansen (1992), Response of deep ocean circulation to initiation of Northern Hemisphere glaciation (3-2 Ma), Paleoceanography, 7(5), 645-672.
Raymo, M. E., D. W. Oppo, and W. Curry (1997), The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective, Paleoceanography, 12(4), 546-559.
Raymo, M. E., W. F. Ruddiman, N. J. Shackleton, and D. W. Oppo (1990), Evolution of Atlantic-Pacific δ13C gradients over the last 2.5 m.y, Earth and Planetary Science Letters, 97(3-4), 353-368.
Reid, J. L. (1981), On the mid-depth circulation of the world ocean, In: Evolution of physical oceanography, B. A. Warren and J. C. Wunsch, editors, MIT Press Cambridge, MA, 70-111.
Reimer, P. J., et al. (2009), IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP, Radiocarbon, 51, 1111-1150.
Ruddiman, W. F., M. E. Raymo, D. G. Martinson, B. M. Clement, and J. Backma (1989), Pleistocene evolution: Northern hemisphere ice sheets and north Atlantic ocean, Paleoceanography, 4, 353-412.
Schmiedl, G., M. Pfeilsticker, C. Hemleben, and A. Mackensen (2004), Environmental and biological effects on the stable isotope composition of recent deep-sea benthic foraminifera from the western Mediterranean Sea, Marine Micropaleontology, 51(1–2), 129-152.
Schmitz, W. J. (1996), On the world ocean circulation: volume II, The Pacific and Indian Oceans/A Global Update, 237 pp.
Shackleton, N. J. (1974), Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial, Cent. Nat. Rech. Sci. Colloq. Int., 219, 203-209.
Shackleton, N. J., M. A. Hall, J. Line, and C. Shuxi (1983), Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere, Nature, 306(5941), 319-322.
Stuiver, M., P. J. Reimer, and R. W. Reimer (2010), CALIB 6.0. available online at: http://calib.qub.ac.uk/calib (accessed June 24, 2011).
Thibault, N., and S. Gardin (2010), The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific, Palaeogeography, Palaeoclimatology, Palaeoecology, 291(3–4), 239-252.
Tiedemann, R., M. Sarnthein, and N. J. Shackleton (1994), Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659, Paleoceanography, 9(4), 619-638.
van der Zwaan, G. J., F. J. Jorissen, P. J. J. M. Verhallen, and C. H. von Daniels (1986), Atlantic-European Oligocene to recent Uvigerina: taxonomy, paleoecology and paleobiogeography, Utrecht Micropal. Bulletin, 36, 1-240.
Venz, K. A., D. A. Hodell, C. Stanton, and D. A. Warnke (1999), A 1.0 Myr record of glacial North Atlantic Intermediate Water variability from ODP Site 982 in the Northeast Atlantic, Paleoceanography, 14(1), 42-52.
Whitworth, T., B. A. Warren, W. D. Nowlin, R. D. Pillsbury, and M. I. Moore (1999), On the deep western-boundary current in the Southwest Pacific Basin, Progress in Oceanography, 43, 1-54.
Woodruff, F., S. M. Savin, and R. G. Douglas (1980), Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera, Marine Micropaleontology, 5(0), 3-11.
Yamane, M. (2003), Late Quaternary variations in water mass in the Shatsky Rise area, northwest Pacific Ocean, Marine Micropaleontology, 48(3–4), 205-223.
Yanagimoto, D., and M. Kawabe (2007), Deep-circulation flow at mid-latitude in the western North Pacific, Deep Sea Research Part I: Oceanographic Research Papers, 54(12), 2067-2081.
Zahn, R., K. Winn, and M. Sarnthein (1986), Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina Peregrina group and Cibicidoides Wuellerstorfi, Paleoceanography, 1(1), 27-42.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58912-
dc.description.abstract底棲性有孔蟲殼體的δ13C數值顯示現今深層海水的最小值(-0.2‰)於北太平洋附近地區,但在上次冰盛期(Last Glacial Maximum, LGM)時,全球大洋的最小值(-0.9‰)卻出現在南大西洋深水層。前人研究認為係因為冰期時北太平洋有額外注入的低營養鹽水團所致 [Curry et al., 1988; Duplessy et al., 1988; Herguera et al., 1992; Keigwin, 1998],但Toggweiler et al. [2006]則認為在冰期時太平洋深層海水主要仍受北大西洋源區來的水團影響,北太平洋注入的水團影響有限。多年來對於影響大洋深層水的δ13C最小值遷移的因素眾說紛紜。
在西北太平洋地區,有孔蟲碳酸鈣殼體不易良好保存,鑽井有限,迄今對於古深部洋流變化的相關研究年限不超過3.5萬年前,雖在Shatsky Rise海底高原地區有部分岩芯有孔蟲氧碳同位素數據可達約18萬年前,但其討論仍著重在表層黑潮及親潮水團的變化,較少論及深層水團(>2000公尺)。本研究期望透過位於西北太平洋的海底高原Shatsky Rise所鑽取的岩芯ODP 1210A(32o13’N, 158o15’E;水深2573.6 m),藉由分析岩芯中底棲性有孔蟲Uvigerina peregrina (300-425 μm)氧碳同位素數值,討論18萬年以來西北太平洋深層海水的變化。
從底棲性有孔蟲的氧碳同位素結果比較中得知Shatsky Rise海底高原上的三根岩芯ODP 1210A、NGC102、S-2 (岩芯水深分別約為2574公尺、2612公尺和3017公尺) ,在過去18萬年來均位於相同的水團中──繞極深層水(Circumpolar Deep Water, CDW)。進一步將所整理的八根西太平洋岩芯底棲性有孔蟲δ13C數值相比較,可知西太平洋地區約2500公尺以下的深層海水,在過去18萬年來冰期-間冰期主要皆受從大西洋而來的繞極深層水(CDW)影響,該水團注入太平洋海盆後成為深層西部邊界流(Deep Western Boundary Current, DWBC)往北運輸;從西南太平洋與西北太平洋岩芯的碳同位素數據比較中可見,在冰期時西北太平洋的δ13C數值並沒有高於西南太平洋的δ13C數值,顯示出冰期時2500公尺以下的深層海水並沒有如前人研究中所說的受到冰期北太平洋中層水的影響。
本研究認為西太平洋位於2500-4000公尺深層海水的δ13C數值係由60%的NADW與40%的AABW水團混合,並加上再礦化常數的海水訊號[Lisiecki, 2010]而成,水團從西南往西北太平洋輸送過程中,有機物不斷分解,故須加上碳的再礦化常數,δ13C數值會逐漸變負,西赤道及西北太平洋地區的再礦化常數約為-0.5‰,而西南太平洋地區的再礦化常數為-0.2‰;另一方面,冰期時從西南太平洋注入的深層海水速度較快,使得西南太平洋與西赤道/西北太平洋地區的δ13C數值差異較間冰期時來得小。
總結來說,本研究認為過去18萬年以來,太平洋深層海水主要是受大西洋來源水團的影響,故可排除冰期時北太平洋因有額外注入的低營養鹽水團,使得大洋深層水的δ13C最小值遷移的因素。
zh_TW
dc.description.abstractAt present the deep ocean carbon isotope minima (-0.2‰) is in the North Pacific, whereas during the Last Glacial Maximum (LGM) the minima (-0.9‰) was in the South Atlantic. Several previous studies pointed out that this shift was caused by additional freshly-formed waters in the North Pacific [Curry et al., 1988; Duplessy et al., 1988; Herguera et al., 1992; Keigwin, 1998], but Toggweiler et al. [2006] suggested the Pacific deep water was affected mainly by the deep water source from North Atlantic.
In northwestern Pacific, the previous studies covered only the history of deep-ocean circulation patterns within the past 35 kyr, although a few records on the Shatsky Rise discussed surface water mass circulations over the past 180 kyr. To extend our understanding of the northwestern Pacific deep water mass circulation, we analyzed carbon and oxygen isotopes (δ13C and δ18O) of benthic foraminifera Uvigerina peregrina (300-425 μm) of Hole ODP 1210A (32o13.4’N, 158o15.6’E; water depth 2573.6 m) cored from Shatsky Rise. An age model for the past 180 kyr was established by 14C dating data and U. peregrina δ18O curve correlated to the LR04 global benthic foraminifera δ18O stack [Lisiecki and Raymo, 2005].
The results of benthic foraminifera δ18O and δ13C of three cores (ODP 1210A、NGC102、S-2) on Shatsky Rise showed they have been in the same water mass, Circumpolar Deep Water (CDW), during the past 180 kyr. We compared eight δ13C records of the western Pacific and found they have similar δ13C patterns during the past 180 kyr, implying that the deep water below 2500 m in the western Pacific were influenced by the Deep Western Boundary Current (DWBC). Because the δ13C records of northwestern Pacific did not show higher δ13C values than that in the southwestern Pacific during the glacial periods, we consider that the Glacial North Atlantic Intermediate Water (GNAIW) did not influence the deep waters below 2500 m in the northwestern Pacific.
Our study point out that the δ13C records of 2500-4000 m deep water in western Pacific was composed by 60% NADW and 40% AABW modified with a reminerlization constant [Lisiecki, 2010]. As the water mass was transported from the southwest to northwest Pacific, more organic matters were decomposed and the δ13C of seawater decreased. Due to this remineralization, the adjusting constant in the formula for the western equatorial and northwestern Pacific δ13C is -0.5‰, and for the southwestern Pacific is -0.2‰. Besides, the transportation of deep waters from the southwestern Pacific into the Pacific Basin was faster in glacial times than in the interglacial times. This increase of flow rate of the deep water resulted in a smaller difference between the δ13C of the western equatorial/northwestern Pacific and the δ13C of the southwestern Pacific during the glacial times.
In summary, we consider the Pacific deep water was affected mainly by the deep water sources from Atlantic during the past 180 kyr. The shift of the deep ocean δ13C minima was not caused by additional freshly-formed waters in the North Pacific.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:38:20Z (GMT). No. of bitstreams: 1
ntu-102-R98224106-1.pdf: 3445493 bytes, checksum: 977ed3580981ade6cb083281eed0261c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents第一章、緒論 1
1.1前言 1
1.2深層海水研究背景 2
1.2.1大西洋地區深層海水 2
1.2.2太平洋地區深層海水 3
1.3研究動機 6
第二章、研究材料與方法 7
2.1岩芯站位 7
2.2有孔蟲樣本前處理與挑選 8
2.2.1樣本前處理 8
2.2.2有孔蟲挑選 8
2.3有孔蟲氧碳同位素分析 10
2.3.1氧、碳同位素原理 10
2.3.2有孔蟲分析前的清洗步驟 11
2.3.3質譜儀分析 11
第三章、研究結果 12
3.1年代模式建立 12
3.1.1碳十四定年分析 12
3.1.2碳十四定年點的選用 13
3.1.3建立ODP 1210A氧同位素地層年代 18
3.2底棲性有孔蟲氧碳分析結果 20
第四章、討論 21
4.1底棲性有孔蟲氧碳同位素 21
4.1.1不同底棲種屬間的差值(offset) 21
4.1.2 Shatsky Rise區域岩芯之比較 26
4.2西太平洋底棲性有孔蟲碳同位素記錄 29
4.3底棲性有孔蟲碳同位素記錄之比較 33
4.3.1南、北大西洋記錄之比較 33
4.3.2西太平洋冰期-間冰期深層海水的環流變化 36
4.3.3西太平洋與南大西洋記錄之比較 42
第五章、結論 44
參考文獻 46
附錄 54
dc.language.isozh-TW
dc.subject第四紀zh_TW
dc.subject西北太平洋zh_TW
dc.subjectUvigerina peregrinazh_TW
dc.subject穩定氧碳同位素zh_TW
dc.subjectODP 1210Azh_TW
dc.subjectODP 1210Aen
dc.subjectthe northwestern Pacificen
dc.subjectUvigerina peregrinaen
dc.subjectLate Quaternaryen
dc.subjectoxygen and carbon stable isotopesen
dc.title西北太平洋過去十八萬年來深層海水的環流變化zh_TW
dc.titleDeep water circulation changes in the northwestern Pacific during the past 180,000 yearsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈川洲,米泓生,李孟陽
dc.subject.keyword第四紀,西北太平洋,Uvigerina peregrina,穩定氧碳同位素,ODP 1210A,zh_TW
dc.subject.keywordLate Quaternary,the northwestern Pacific,Uvigerina peregrina,oxygen and carbon stable isotopes,ODP 1210A,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2013-10-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved