請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐立中(Li-Chung Hsu) | |
| dc.contributor.author | Shih-Yi Chuang | en |
| dc.contributor.author | 莊士億 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:38:06Z | - |
| dc.date.available | 2019-02-25 | |
| dc.date.copyright | 2014-02-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-15 | |
| dc.identifier.citation | References
1. Lafferty EI, Qureshi ST, & Schnare M (2010) The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm (Lond) 7:57. 2. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819-826. 3. Carroll MC (2004) The complement system in regulation of adaptive immunity. Nature immunology 5(10):981-986. 4. Pulendran B, Tang H, & Manicassamy S (2010) Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nature immunology 11(8):647-655. 5. Gordon S (2003) Alternative activation of macrophages. Nature reviews. Immunology 3(1):23-35. 6. Mantovani A, Cassatella MA, Costantini C, & Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nature reviews. Immunology 11(8):519-531. 7. Rathinam VA, Vanaja SK, & Fitzgerald KA (2012) Regulation of inflammasome signaling. Nature immunology 13(4):333-332. 8. Davis BK, Wen H, & Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annual review of immunology 29:707-735. 9. Henao-Mejia J, Elinav E, Strowig T, & Flavell RA (2012) Inflammasomes: far beyond inflammation. Nature immunology 13(4):321-324. 10. Akira S, Uematsu S, & Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783-801. 11. Netea MG & van der Meer JW (2011) Immunodeficiency and genetic defects of pattern-recognition receptors. The New England journal of medicine 364(1):60-70. 12. Dagenais M, Skeldon A, & Saleh M (2012) The inflammasome: in memory of Dr. Jurg Tschopp. Cell death and differentiation 19(1):5-12. 13. Franchi L, Munoz-Planillo R, & Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nature immunology 13(4):325-332. 14. Newton K & Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harbor perspectives in biology 4(3). 15. Satoh T, et al. (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proceedings of the National Academy of Sciences of the United States of America 107(4):1512-1517. 16. Rothenfusser S, et al. (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. Journal of immunology 175(8):5260-5268. 17. Latz E, Xiao TS, & Stutz A (2013) Activation and regulation of the inflammasomes. Nature reviews. Immunology 13(6):397-411. 18. Anderson KV, Jurgens G, & Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42(3):779-789. 19. Lu YC, Yeh WC, & Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42(2):145-151. 20. O'Neill LA & Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nature reviews. Immunology 7(5):353-364. 21. Kawai T & Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology 11(5):373-384. 22. Spellberg B & Edwards JE (2002) The Pathophysiology and Treatment of Candida Sepsis. Current infectious disease reports 4(5):387-399. 23. Zitvogel L, Kepp O, Galluzzi L, & Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nature immunology 13(4):343-351. 24. Miao EA, Rajan JV, & Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunological reviews 243(1):206-214. 25. Martinon F, Burns K, & Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular cell 10(2):417-426. 26. Kofoed EM & Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477(7366):592-595. 27. Zhao Y, et al. (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477(7366):596-600. 28. Hoffman HM & Wanderer AA (2010) Inflammasome and IL-1beta-mediated disorders. Current allergy and asthma reports 10(4):229-235. 29. Sims JE & Smith DE (2010) The IL-1 family: regulators of immunity. Nature reviews. Immunology 10(2):89-102. 30. Yang CS, Shin DM, & Jo EK (2012) The Role of NLR-related Protein 3 Inflammasome in Host Defense and Inflammatory Diseases. International neurourology journal 16(1):2-12. 31. Guarda G, et al. (2011) Differential expression of NLRP3 among hematopoietic cells. Journal of immunology 186(4):2529-2534. 32. Barton GM (2008) A calculated response: control of inflammation by the innate immune system. The Journal of clinical investigation 118(2):413-420. 33. Hornung V, et al. (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature immunology 9(8):847-856. 34. Martinon F, Petrilli V, Mayor A, Tardivel A, & Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237-241. 35. Martinon F (2010) Signaling by ROS drives inflammasome activation. European journal of immunology 40(3):616-619. 36. van Bruggen R, et al. (2010) Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 115(26):5398-5400. 37. Koopman WJ, et al. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxidants & redox signaling 12(12):1431-1470. 38. Kepp O, Galluzzi L, & Kroemer G (2011) Mitochondrial control of the NLRP3 inflammasome. Nature immunology 12(3):199-200. 39. Zhou R, Yazdi AS, Menu P, & Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221-225. 40. Nakahira K, et al. (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature immunology 12(3):222-230. 41. Zhou R, Tardivel A, Thorens B, Choi I, & Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature immunology 11(2):136-140. 42. Oka S, et al. (2009) Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150(3):1225-1234. 43. Lu B, et al. (2012) Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488(7413):670-674. 44. Murakami T, et al. (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proceedings of the National Academy of Sciences of the United States of America 109(28):11282-11287. 45. Bauernfeind F, et al. (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. Journal of immunology 189(8):4175-4181. 46. Haneklaus M, et al. (2012) Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. Journal of immunology 189(8):3795-3799. 47. Juliana C, et al. (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of biological chemistry 287(43):36617-36622. 48. Levine B, Mizushima N, & Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469(7330):323-335. 49. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, & Vandenabeele P (2012) Autophagy: for better or for worse. Cell research 22(1):43-61. 50. Klionsky DJ, et al. (2007) How shall I eat thee? Autophagy 3(5):413-416. 51. Xu Y, et al. (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27(1):135-144. 52. Shi CS & Kehrl JH (2010) Traf6 and A20 differentially regulate TLR4-induced autophagy by affecting the ubiquitination of Beclin 1. Autophagy 6(7):986-987. 53. Xu C, et al. (2011) Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 25(8):2700-2710. 54. Joo JH, et al. (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Molecular cell 43(4):572-585. 55. Saitoh T, et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264-268. 56. Medcalf RL & Stasinopoulos SJ (2005) The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. The FEBS journal 272(19):4858-4867. 57. Kruithof EK, Baker MS, & Bunn CL (1995) Biological and clinical aspects of plasminogen activator inhibitor type 2. Blood 86(11):4007-4024. 58. Vassalli JD, Sappino AP, & Belin D (1991) The plasminogen activator/plasmin system. The Journal of clinical investigation 88(4):1067-1072. 59. Ye RD, Wun TC, & Sadler JE (1988) Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells. The Journal of biological chemistry 263(10):4869-4875. 60. Macaluso M, et al. (2006) Cytoplasmic and nuclear interaction between Rb family proteins and PAI-2: a physiological crosstalk in human corneal and conjunctival epithelial cells. Cell death and differentiation 13(9):1515-1522. 61. Wilczynska M, Lobov S, Ohlsson PI, & Ny T (2003) A redox-sensitive loop regulates plasminogen activator inhibitor type 2 (PAI-2) polymerization. The EMBO journal 22(8):1753-1761. 62. Benarafa C & Remold-O'Donnell E (2005) The ovalbumin serpins revisited: perspective from the chicken genome of clade B serpin evolution in vertebrates. Proceedings of the National Academy of Sciences of the United States of America 102(32):11367-11372. 63. Huntington JA (2011) Serpin structure, function and dysfunction. Journal of thrombosis and haemostasis : JTH 9 Suppl 1:26-34. 64. Lee JA, Cochran BJ, Lobov S, & Ranson M (2011) Forty years later and the role of plasminogen activator inhibitor type 2/SERPINB2 is still an enigma. Seminars in thrombosis and hemostasis 37(4):395-407. 65. Schroder WA, et al. (2010) A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity. Journal of immunology 184(5):2663-2670. 66. Darnell GA, et al. (2003) Inhibition of retinoblastoma protein degradation by interaction with the serpin plasminogen activator inhibitor 2 via a novel consensus motif. Molecular and cellular biology 23(18):6520-6532. 67. Yu H, Maurer F, & Medcalf RL (2002) Plasminogen activator inhibitor type 2: a regulator of monocyte proliferation and differentiation. Blood 99(8):2810-2818. 68. Boncela J, Przygodzka P, Papiewska-Pajak I, Wyroba E, & Cierniewski CS (2011) Association of plasminogen activator inhibitor type 2 (PAI-2) with proteasome within endothelial cells activated with inflammatory stimuli. The Journal of biological chemistry 286(50):43164-43171. 69. Dickinson JL, Bates EJ, Ferrante A, & Antalis TM (1995) Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. The Journal of biological chemistry 270(46):27894-27904. 70. Dickinson JL, Norris BJ, Jensen PH, & Antalis TM (1998) The C-D interhelical domain of the serpin plasminogen activator inhibitor-type 2 is required for protection from TNF-alpha induced apoptosis. Cell death and differentiation 5(2):163-171. 71. Jensen PH, Lorand L, Ebbesen P, & Gliemann J (1993) Type-2 plasminogen-activator inhibitor is a substrate for trophoblast transglutaminase and factor XIIIa. Transglutaminase-catalyzed cross-linking to cellular and extracellular structures. European journal of biochemistry / FEBS 214(1):141-146. 72. Jensen PH, et al. (1994) A unique interhelical insertion in plasminogen activator inhibitor-2 contains three glutamines, Gln83, Gln84, Gln86, essential for transglutaminase-mediated cross-linking. The Journal of biological chemistry 269(21):15394-15398. 73. Park JM, et al. (2005) Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis--CREB and NF-kappaB as key regulators. Immunity 23(3):319-329. 74. Croucher DR, Saunders DN, Lobov S, & Ranson M (2008) Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nature reviews. Cancer 8(7):535-545. 75. Greten FR, et al. (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130(5):918-931. 76. Agostini L, et al. (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319-325. 77. Hsu LC, et al. (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proceedings of the National Academy of Sciences of the United States of America 105(22):7803-7808. 78. Hsu LC, et al. (2011) IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nature immunology 12(2):144-150. 79. Zuckerbraun BS, et al. (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21(4):1099-1106. 80. West AP, et al. (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476-480. 81. Gross TJ & Sitrin RG (1990) The THP-1 cell line is a urokinase-secreting mononuclear phagocyte with a novel defect in the production of plasminogen activator inhibitor-2. Journal of immunology 144(5):1873-1879. 82. Netea MG, et al. (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 113(10):2324-2335. 83. Udofa EA, et al. (2013) The transcription factor C/EBP-beta mediates constitutive and LPS-inducible transcription of murine SerpinB2. PloS one 8(3):e57855. 84. Stringer B, Udofa EA, & Antalis TM (2012) Regulation of the human plasminogen activator inhibitor type 2 gene: cooperation of an upstream silencer and transactivator. The Journal of biological chemistry 287(13):10579-10589. 85. Fernandes-Alnemri T, et al. (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell death and differentiation 14(9):1590-1604. 86. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. The Journal of physiology 552(Pt 2):335-344. 87. Shi CS, et al. (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nature immunology 13(3):255-263. 88. Sander LE, et al. (2011) Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474(7351):385-389. 89. Davis BK, et al. (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. Journal of immunology 186(3):1333-1337. 90. Masters SL, et al. (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nature immunology 11(10):897-904. 91. Duewell P, et al. (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464(7293):1357-1361. 92. Halle A, et al. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature immunology 9(8):857-865. 93. Qu Y, Franchi L, Nunez G, & Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. Journal of immunology 179(3):1913-1925. 94. Tschopp J & Schroder K (2010) NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nature reviews. Immunology 10(3):210-215. 95. Compan V, et al. (2012) Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. Immunity 37(3):487-500. 96. Bruchard M, et al. (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature medicine 19(1):57-64. 97. Twig G, et al. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal 27(2):433-446. 98. Takeda K, et al. (2010) Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proceedings of the National Academy of Sciences of the United States of America 107(8):3540-3545. 99. Mayor A, Martinon F, De Smedt T, Petrilli V, & Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nature immunology 8(5):497-503. 100. Delgado MA, Elmaoued RA, Davis AS, Kyei G, & Deretic V (2008) Toll-like receptors control autophagy. The EMBO journal 27(7):1110-1121. 101. Qu X, et al. (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. The Journal of clinical investigation 112(12):1809-1820. 102. Jounai N, et al. (2011) NLRP4 negatively regulates autophagic processes through an association with beclin1. Journal of immunology 186(3):1646-1655. 103. Delhase M, et al. (2012) TANK-binding kinase 1 (TBK1) controls cell survival through PAI-2/serpinB2 and transglutaminase 2. Proceedings of the National Academy of Sciences of the United States of America 109(4):E177-186. 104. Tonnetti L, et al. (2008) SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival. Cancer research 68(14):5648-5657. 105. Komiyama T, et al. (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. The Journal of biological chemistry 269(30):19331-19337. 106. Petit F, et al. (1996) Characterization of a myxoma virus-encoded serpin-like protein with activity against interleukin-1 beta-converting enzyme. Journal of virology 70(9):5860-5866. 107. Zhang YQ, et al. (2003) Identification of interaction between PAI-2 and IRF-3. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 35(7):661-665. 108. Rathinam VA, et al. (2012) TRIF Licenses Caspase-11-Dependent NLRP3 Inflammasome Activation by Gram-Negative Bacteria. Cell 150(3):606-619. 109. Kayagaki N, et al. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479(7371):117-121. 110. Bauernfeind FG, et al. (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of immunology 183(2):787-791. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58908 | - |
| dc.description.abstract | NLRP3 inflammasome 是一種透過辨識廣泛的外來病原或身體內部損傷因子而活化形成的複合蛋白體,它進而促使半胱氨酸蛋白酶-1的活化及前發炎性細胞激素的介白素-1β 和 -18的產生。 在許多致病性的疾病中,可以發現NLRP3 inflammasome 的功能失調以致過度活化,但是它的調節機制仍舊不是很清楚。 在這裡我們發現在巨噬細胞內剔除一種絲胺酸蛋白酶抑制素,第二型纖溶酶原激活物抑制酶,再活化類鐸受體4和2的訊息傳導過程會造成 NLRP3和 ASC控制的半胱氨酸蛋白酶-1的活化及介白素-1β 的大量產生。然而活化類鐸受體4和2 也會誘導第二型纖溶酶原激活物抑制酶的表現,它會穩定自噬基因蛋白Beclin 1,進而促使自噬作用的增加來降低粒線體的自由基的產生、NLRP3蛋白質的表現及前介白素-1β的生產作用。由我們的實驗確立了一個藉由活化類鐸受體的訊號傳導中來調控NLRP3 inflammasome的活性,並揭示了一種新的細胞自主機制去負調節經由類鐸受體或大腸桿菌所引起的線粒體功能障礙、氧化壓力和介白素-1β 所產生的發炎反應。 | zh_TW |
| dc.description.abstract | The NLRP3 inflammasome, a multiprotein complex, triggers caspase-1 activation and maturation of proinflammatory cytokines IL-1β and IL-18 upon sensing a wide range of pathogen- and damage-associated molecules. Dyregulation of the NLRP3 inflammasome activity contributes to the pathogenesis of many diseases, but its regulation remains poorly defined. Here we show that depletion of Plasminogen activator inhibitor type 2 (PAI-2), a serine protease inhibitor, resulted in NLRP3- and ASC-dependent caspase-1 activation and IL-1β secretion in macrophages upon TLR2 and TLR4 engagement. TLR2 or 4 agonists induced PAI-2 expression, which subsequently stabilized autophagic protein Beclin 1 to promote autophagy resulting in decreased mitochondrial reactive oxygen species (mROS), NLRP3 protein as well as pro-IL-1β processing. Together, our data identify a new tier of TLR signaling in controlling NLRP3 inflammasome activation, and reveal a novel cell-autonomous mechanism which inversely regulates TLRs- or Escherichia coli-induced mitochondrial dysfunction, oxidative stress, and IL-1β-driven inflammation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:38:06Z (GMT). No. of bitstreams: 1 ntu-102-D96448009-1.pdf: 10636863 bytes, checksum: 789c5880f55a0ecb9d09fb9d5ccde5f6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Contents
中文摘要 1 ABSTRACT 2 CONTENTS 3 1. INTRODUCTION 9 1.1 Innate immunity 9 1.2 Toll-like receptor 4 (TLR4) 12 1.3 Inflammasome 13 1.4 NLRP3 inflammasome 16 1.5 Autophagy 19 1.6 Plasminogen activator inhibitor type 2 (PAI-2) 21 1.7 The purpose and aims of this study 24 2. MATERIALS AND METHODS 26 2.1 Reagents, antibodies, and plasmids 26 2.2 Cell cultures and mice 27 2.3 Macrophage Isolation and Stimulation 28 2.4 Bacterial infection 29 2.5 Transfections and lentivirus infection 29 2.6 shRNA mediated gene silencing 30 2.7 mRNA isolation and RT-quantitative PCR (RT-qPCR) 31 2.8 Immunoblotting 32 2.9 Detection of cytokines and lactate dehydrogenase (LDH) release 33 2.10 ASC pyroptosome cross-linking assay 33 2.11 Immunoprecipitation 34 2.12 Immunofluorescence 35 2.13 ROS detection 35 2.14 Assays for lysosomal integrity and mitochondrial membrane potential 36 2.15 Mitochondrial fractionation 36 2.16 Statistical analysis 37 3. RESULTS 38 3.1 Loss of PAI-2 enhances LPS-induced IL-1β production and caspase-1 activation 38 3.2 Activation of TLR4 and TLR2, but not TLR3 and TLR9, induces IL-1β production in THP-1 macrophages. 39 3.3 LPS-induced activation of IKK, and MAPKs activation, and the expression of proinflammatory cytokines are not altered in PAI-2 expressing THP-1 macrophages. 40 3.4 NLRP3, ASC and caspase-1, but not NLRC4, are required for LPS- and Pam3CSK4-induced IL-1β production and caspase-1 activation in THP-1 macrophages. 41 3.5 PAI-2-inhibited LPS-stimulated IL-1β production, caspase-1 activation and ASC oligomerization, requires its protease inhibition function. 41 3.6 LPS-induced cellular ROS generation is required for IL-1β production and caspase-1 activation, which is abrogated by PAI-2 43 3.7 PAI-2 prevents LPS-induced loss of mitochondrial integrity and mitochondrial ROS (mROS) production 44 3.8 PAI-2 attenuates LPS-induced lysosomal destabilization and cathepsin B activation 45 3.9 PAI-2 enhances autophagy by increasing the level of the autophagic protein Beclin 1 46 3.10 PAI-2 associates with HSP90 and Beclin 1, and protects Beclin 1 from proteasome degradation 47 3.11 PAI-2 augments NLRP3 degradation through autophagy upon LPS stimulation 49 3.12 E. coli-induced IL-1β secretion and cell death are blocked by PAI-2 50 4. DISCUSSION 52 5. FIGURES 61 Fig. 1. Loss of PAI-2 enhances LPS-induced IL-1β production and caspase-1 activation in human and mouse macrophages. 62 Fig. 2. Activation of TLR4 and TLR2, but not TLR3 and TLR9, induces PAI-2 expression to suppress IL-1β production. 64 Fig. 3. LPS-induced activation of IKK, and MAPKs activation, and the mRNA expression of proinflammatory cytokines are not altered in PAI-2 expressing THP-1 macrophages. 66 Fig. 4. NLRP3, ASC and caspase-1, but not NLRC4, are required for LPS- and Pam3CSK4-induced IL-1β production in THP-1 macrophages. 68 Fig. 5. PAI-2-inhibited LPS-stimulated IL-1β production, caspase-1 activation and ASC oligomerization, requires its protease inhibition function. 70 Fig. 6. LPS-induced cellular ROS generation is required for IL-1β production and caspase-1 activation, which is abrogated by PAI-2. 72 Fig. 7. PAI-2 prevents LPS-induced loss of mitochondrial integrity and mitochondrial ROS (mROS) production 74 Fig. 8. PAI-2 abrogates relocation of NLRP3 to mitochondria after LPS stimulation. 76 Fig. 9. LPS triggers lysosomal destabilization and cathepsin B activation in an ROS-dependent manner leading to IL-1β maturation, and PAI-2 reverses these effects. 78 Fig. 10. Potassium efflux is required for LPS-induced cathepsin B activation and IL-1β secretion, but not ROS production. 80 Fig. 11. PAI-2 increases the expression of Beclin 1 and LC3 lipidation. 82 Fig. 12. PAI-2 enhances autophagy. 84 Fig. 13. PAI-2 complexes with HSP90 and Beclin 1 86 Fig. 14. PAI-2 associates with Beclin 1 and HSP90, and protects Beclin 1 from proteosome-mediated degradation. 88 Fig. 15. Autophagy negatively regulates LPS-induced IL-1β secretion and NLRP3 expression. 90 Fig. 16. PAI-2 augments NLRP3 degradation through autophagy upon LPS stimulation 92 Fig. 17. PAI-2 increases colocalization of NLRP3 with autophagosome after LPS treatment. 94 Fig. 18. PAI-2 decreases IL-1β, but not TNF, and NLRP3 production in response to E. coli infection. 96 Fig. 19. PAI-2 protects macrophages from cell death after E. coli infection. 98 Fig. 20. A proposed model summarizes the control of TLR-triggered NLRP3 activation and IL-1β secretion by PAI-2. 100 6. REFERENCES 101 | |
| dc.language.iso | en | |
| dc.subject | 第二型纖溶?原激活物抑制? | zh_TW |
| dc.subject | 自噬作用 | zh_TW |
| dc.subject | 介白素-1β | zh_TW |
| dc.subject | PAI-2 | en |
| dc.subject | autophagy | en |
| dc.subject | NLRP3 | en |
| dc.subject | IL-1β | en |
| dc.title | 第二型纖溶酶原激活物抑制酶經由引發自噬作用和NLRP3降解作用以抑制類鐸受體引發之介白素-1β產生 | zh_TW |
| dc.title | TLR-induced PAI-2 expression suppresses IL-1β processing via increasing autophagy and NLRP3 degradation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 伍安怡(B. A. Wu-Hsieh),林琬琬(Wan-Wan Lin),莊宗顯(Tsung-Hsien Chuang),曾炳輝(Ping-Hui Tseng) | |
| dc.subject.keyword | 第二型纖溶?原激活物抑制?,自噬作用,介白素-1β, | zh_TW |
| dc.subject.keyword | PAI-2,autophagy,NLRP3,IL-1β, | en |
| dc.relation.page | 117 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-10-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 10.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
